imaging reconstruction
Recently Published Documents


TOTAL DOCUMENTS

283
(FIVE YEARS 91)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Vol 17 (01) ◽  
pp. P01009
Author(s):  
K. Chaiwongkhot ◽  
T. Kin ◽  
Y. Nagata ◽  
T. Komori ◽  
N. Okamoto ◽  
...  

Abstract A feasibility demonstration of three-dimensional (3D) muon tomography was performed for infrastructure equivalent targets using the proposed portable muography detector. For the target, we used two sets of lead blocks placed at different heights. The detector consists of two muon position-sensitive detectors, made of plastic scintillating fibers (PSFs) and multi-pixel photon counters (MPPCs) with an angular resolution of 8 msr. In this work, the maximum likelihood-expectation maximization (ML-EM) method was used for the 3D imaging reconstruction of the muography. For both simulation and experiment, the reconstructed positions of the blocks produce consistent results with prior knowledge of the blocks' arrangement. This result demonstrates the potential of the 3D tomographic imaging of infrastructure by using seven detection positions for portable muography detectors to image infrastructure scale targets.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jiaqi Han ◽  
Long Li ◽  
Shuncheng Tian ◽  
Xiangjin Ma ◽  
Qiang Feng ◽  
...  

This article presents a holographic metasurface antenna with stochastically distributed surface impedance, which produces randomly frequency-diverse radiation patterns. Low mutual coherence electric field patterns generated by the holographic metasurface antenna can cover the K-band from 18 to 26 GHz with 0.1 GHz intervals. By utilizing the frequency-diverse holographic metasurface (FDHM) antenna, we build a near-field microwave computational imaging system based on reflected signals in the frequency domain. A standard horn antenna is adopted to acquire frequency domain signals radiated from the proposed FDHM antenna. A detail imaging restoration process is presented, and the desired targets are correctly reconstructed using the 81 frequency-diverse patterns through full-wave simulation studies. Compressed sensing technique and iterative shrinkage/thresholding algorithms are applied for the imaging reconstruction. The achieved compressive ratio of this computational imaging system on the physical layer is 30:1.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 454
Author(s):  
Yuru Huang ◽  
Yikun Liu ◽  
Haishan Liu ◽  
Yuyang Shui ◽  
Guanwen Zhao ◽  
...  

Image fusion and reconstruction from muldti-images taken by distributed or mobile cameras need accurate calibration to avoid image mismatching. This calibration process becomes difficult in fog when no clear nearby reference is available. In this work, the fusion of multi-view images taken in fog by two cameras fixed on a moving platform is realized. The positions and aiming directions of the cameras are determined by taking a close visible object as a reference. One camera with a large field of view (FOV) is applied to acquire images of a short-distance object which is still visible in fog. This reference is then adopted to the calibration of the camera system to determine the positions and pointing directions at each viewpoint. The extrinsic parameter matrices are obtained with these data, which are applied for the image fusion of distant images captured by another camera beyond visibility. The experimental verification was carried out in a fog chamber and the technique is shown to be valid for imaging reconstruction in fog without a prior in-plane. The synthetic image, accumulated and averaged by ten-view images, is shown to perform potential applicability for fog removal. The enhanced structure similarity is discussed and compared in detail with conventional single-view defogging techniques.


Heritage ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 2960-2972
Author(s):  
Elin Figueiredo ◽  
Carlo Bottaini ◽  
Catarina Miguel ◽  
Aaron Lackinger ◽  
José Mirão ◽  
...  

In the present work, a fragment of a stone mould recently found in Galicia (NW Spain) was studied by multiple analytical techniques approach involving 3D optical imaging reconstruction to obtain data about the shape of the mould, typology of artefact produced, and distribution of a black residue at the surface of the mould and pXRF, SEM-EDS, micro-FTIR, and micro-Raman to investigate the nature of the black residue. The study shows that the mould was likely used for socketed axes with a side loop, was originally composed of two valves and one core, and that it might have been subjected to a repair during use. The black residue is distributed in the carved surface and spreads to nearby surfaces as a result of the use of the mould. The alloy cast in the mould was a ternary bronze (Cu + Sn + Pb). The analyses by SEM-EDS of black residue covering the surface did show the presence of scattered micro particles with P and Ca, and micro-Raman analysis detected the presence of a carbon black of animal source, while micro-FTIR analysis detected remains of proteins, oxalates, and hydroxyapatite. These results are amongst the very few studies made on black residues of ancient moulds and suggest that the mould was dressed with a carbon black of animal origin, such as burned bones, prior to metal casting, probably used as a coating agent to improve the casting and artefact recovery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lin Shi ◽  
Shiying Fan ◽  
Tianshuo Yuan ◽  
Huaying Fang ◽  
Jie Zheng ◽  
...  

Background: The successful application of subthalamic nucleus (STN) deep brain stimulation (DBS) surgery relies mostly on optimal lead placement, whereas the major challenge is how to precisely localize STN. Microstimulation, which can induce differentiating inhibitory responses between STN and substantia nigra pars reticulata (SNr) near the ventral border of STN, has indicated a great potential of breaking through this barrier.Objective: This study aims to investigate the feasibility of localizing the boundary between STN and SNr (SSB) using microstimulation and promote better lead placement.Methods: We recorded neurophysiological data from 41 patients undergoing STN-DBS surgery with microstimulation in our hospital. Trajectories with typical STN signal were included. Microstimulation was applied near the bottom of STN to determine SSB, which was validated by the imaging reconstruction of DBS leads.Results: In most trajectories with microstimulation (84.4%), neuronal firing in STN could not be inhibited by microstimulation, whereas in SNr long inhibition was observed following microstimulation. The success rate of localizing SSB was significantly higher in trajectories with microstimulation than those without. Moreover, results from imaging reconstruction and intraoperative neurological assessments demonstrated better lead location and higher therapeutic effectiveness in trajectories with microstimulation and accurately identified SSB.Conclusion: Microstimulation on microelectrode recording is an effective approach to localize the SSB. Our data provide clinical evidence that microstimulation can be routinely employed to achieve better lead placement.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guangzhi Dai ◽  
Zhiyong He ◽  
Song Lin

Firstly, a novel FRI sampling model has been proposed according to the characteristics of ultrasonic signals. The model has the advantages such as good stability, strong antinoise ability, simple circuit implementation, and fewer preconditions, compared to the traditional methods. Then, in order to verify the validity of the sampling model, the method is applied to B-type ultrasonic imaging, and a B-type phased array ultrasonic imaging algorithm based on FRI sampling model is proposed. Finally, the algorithm simulation experiment is designed, and the results show that the sampling point required by the proposed FRI sampling model is only 0.1% of the traditional B-type phased array ultrasonic imaging method, and the sampling frequency of the proposed ultrasonic imaging algorithm is only 0.0077% of the traditional B-type ultrasonic imaging method. Additionally, the experiment result indicates that this algorithm is more applicable to phased array ultrasonic imaging than the SOS filter is.


Sign in / Sign up

Export Citation Format

Share Document