A time-dependent Schrödinger equation deduced from time evolution in a subquantum model

1978 ◽  
Vol 44 (1) ◽  
pp. 39-46 ◽  
Author(s):  
J. Fronteau ◽  
A. Tellez-Arenas
2018 ◽  
Vol 169 ◽  
pp. 00029
Author(s):  
Takahiro Wada ◽  
Tomomasa Asano ◽  
Nicolae Carjan

We investigate the angular distribution of scission neutrons taking account of the effects of fission fragments. The time evolution of the wave function of the scission neutron is obtained by integrating the time-dependent Schrodinger equation numerically. The effects of the fission fragments are taken into account by means of the optical potentials. The angular distribution is strongly modified by the presence of the fragments. In the case of asymmetric fission, it is found that the heavy fragment has stronger effects. Dependence on the initial distribution and on the properties of fission fragments is discussed. We also discuss on the treatment of the boundary to avoid artificial reflections


2018 ◽  
Vol 32 (10) ◽  
pp. 1850121
Author(s):  
Zhen-Yu Zheng ◽  
Peng Li

We consider the time evolution of two-point correlation function in the transverse-field Ising chain (TFIC) with ring frustration. The time-evolution procedure we investigated is equivalent to a quench process in which the system is initially prepared in a classical kink state and evolves according to the time-dependent Schrödinger equation. Within a framework of perturbative theory (PT) in the strong kink phase, the evolution of the correlation function is disclosed to demonstrate a qualitatively new behavior in contrast to the traditional case without ring frustration.


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This introductory chapter considers first the relation between molecular reaction dynamics and the major branches of physical chemistry. The concept of elementary chemical reactions at the quantized state-to-state level is discussed. The theoretical description of these reactions based on the time-dependent Schrödinger equation and the Born–Oppenheimer approximation is introduced and the resulting time-dependent Schrödinger equation describing the nuclear dynamics is discussed. The chapter concludes with a brief discussion of matter at thermal equilibrium, focusing at the Boltzmann distribution. Thus, the Boltzmann distribution for vibrational, rotational, and translational degrees of freedom is discussed and illustrated.


1979 ◽  
Vol 43 (7) ◽  
pp. 512-515 ◽  
Author(s):  
Vida Maruhn-Rezwani ◽  
Norbert Grün ◽  
Werner Scheid

1999 ◽  
Vol 40 (7) ◽  
pp. 3268-3274 ◽  
Author(s):  
Federico Finkel ◽  
Artemio González-López ◽  
Niky Kamran ◽  
Miguel A. Rodrı́guez

Sign in / Sign up

Export Citation Format

Share Document