Fish biomass size spectra in Chesapeake Bay

Estuaries ◽  
2005 ◽  
Vol 28 (2) ◽  
pp. 226-240 ◽  
Author(s):  
Sukgeun Jung ◽  
Edward D. Houde

1996 ◽  
Vol 53 (5) ◽  
pp. 994-1006 ◽  
Author(s):  
H Cyr ◽  
R H Peters
Keyword(s):  


2016 ◽  
Author(s):  
James PW Robinson ◽  
Ivor D Williams ◽  
Andrew M Edwards ◽  
Jana McPherson ◽  
Lauren Yeager ◽  
...  

Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra of coral reef fish communities at 38 US-affiliated Pacific islands, spanning from near pristine to highly human populated. Reef fish community size spectra slopes ‘steepened’ steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. In contrast, total fish community biomass was substantially lower on inhabited islands than uninhabited ones, regardless of human population density. Comparing the relationship between size spectra and reef fish biomass, we found that on populated islands size spectra steepened linearly with declining biomass, whereas on uninhabited islands size spectra and biomass were unrelated. Size spectra slopes also were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to biophysical conditions, being influenced by oceanic productivity, sea surface temperature, island type, and habitat complexity. Our results suggest that community size structure is more robust than total fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems.



2016 ◽  
Author(s):  
James PW Robinson ◽  
Ivor D Williams ◽  
Andrew M Edwards ◽  
Jana McPherson ◽  
Lauren Yeager ◽  
...  

Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra of coral reef fish communities at 38 US-affiliated Pacific islands, spanning from near pristine to highly human populated. Reef fish community size spectra slopes ‘steepened’ steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. In contrast, total fish community biomass was substantially lower on inhabited islands than uninhabited ones, regardless of human population density. Comparing the relationship between size spectra and reef fish biomass, we found that on populated islands size spectra steepened linearly with declining biomass, whereas on uninhabited islands size spectra and biomass were unrelated. Size spectra slopes also were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to biophysical conditions, being influenced by oceanic productivity, sea surface temperature, island type, and habitat complexity. Our results suggest that community size structure is more robust than total fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems.





Itinerario ◽  
2000 ◽  
Vol 24 (2) ◽  
pp. 146-169 ◽  
Author(s):  
Michael Leroy Oberg

In August of 1587 Manteo, an Indian from Croatoan Island, joined a group of English settlers in an attack on the native village of Dasemunkepeuc, located on the coast of present-day North Carolina. These colonists, amongst whom Manteo lived, had landed on Roanoke Island less than a month before, dumped there by a pilot more interested in hunting Spanish prize ships than in carrying colonists to their intended place of settlement along the Chesapeake Bay. The colonists had hoped to re-establish peaceful relations with area natives, and for that reason they relied upon Manteo to act as an interpreter, broker, and intercultural diplomat. The legacy of Anglo-Indian bitterness remaining from Ralph Lane's military settlement, however, which had hastily abandoned the island one year before, was too great for Manteo to overcome. The settlers found themselves that summer in the midst of hostile Indians.





Author(s):  
Gene Yagow ◽  
Brian Benham ◽  
Karen Kline ◽  
Becky Zeckoski ◽  
Carlington Wallace
Keyword(s):  


2020 ◽  
Vol 651 ◽  
pp. 125-143
Author(s):  
TD Auth ◽  
T Arula ◽  
ED Houde ◽  
RJ Woodland

The bay anchovy Anchoa mitchilli is the most abundant fish in Chesapeake Bay (USA) and is a vital link between plankton and piscivores within the trophic structure of this large estuarine ecosystem. Baywide distributions and abundances of bay anchovy eggs and larvae, and larval growth, were analyzed in a 5 yr program to evaluate temporal and spatial variability based on research surveys in the 1995-1999 spawning seasons. Effects of environmental variability and abundance of zooplankton that serve as prey for larval bay anchovy were analyzed. In the years of these surveys, 97.6% of eggs and 98.8% of larvae occurred in the polyhaline lower bay. Median egg and larval abundances differed more than 10-fold for surveys conducted in the 5 yr and were highest in the lower bay. Within years, median larval abundance (ind. m-2) in the lower bay was generally 1-2 orders of magnitude higher than upper-bay abundance. Salinity, temperature, and dissolved oxygen explained 12% of the spatial and temporal variability in egg abundances and accounted for 27% of the variability in larval abundances. The mean, baywide growth rate for larvae over the 5 yr period was 0.75 ± 0.01 mm d-1, and was best explained by zooplankton concentration and feeding incidence. Among years, mean growth rates ranged from 0.68 (in 1999) to 0.81 (in 1998) mm d-1 and were fastest in the upper bay. We identified environmental factors, especially salinity, that contributed to broadscale variability in egg and larval production.





Sign in / Sign up

Export Citation Format

Share Document