Biomass-size spectra and the prediction of fish biomass in lakes

1996 ◽  
Vol 53 (5) ◽  
pp. 994-1006 ◽  
Author(s):  
H Cyr ◽  
R H Peters
Keyword(s):  

Estuaries ◽  
2005 ◽  
Vol 28 (2) ◽  
pp. 226-240 ◽  
Author(s):  
Sukgeun Jung ◽  
Edward D. Houde


2016 ◽  
Author(s):  
James PW Robinson ◽  
Ivor D Williams ◽  
Andrew M Edwards ◽  
Jana McPherson ◽  
Lauren Yeager ◽  
...  

Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra of coral reef fish communities at 38 US-affiliated Pacific islands, spanning from near pristine to highly human populated. Reef fish community size spectra slopes ‘steepened’ steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. In contrast, total fish community biomass was substantially lower on inhabited islands than uninhabited ones, regardless of human population density. Comparing the relationship between size spectra and reef fish biomass, we found that on populated islands size spectra steepened linearly with declining biomass, whereas on uninhabited islands size spectra and biomass were unrelated. Size spectra slopes also were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to biophysical conditions, being influenced by oceanic productivity, sea surface temperature, island type, and habitat complexity. Our results suggest that community size structure is more robust than total fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems.



2016 ◽  
Author(s):  
James PW Robinson ◽  
Ivor D Williams ◽  
Andrew M Edwards ◽  
Jana McPherson ◽  
Lauren Yeager ◽  
...  

Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra of coral reef fish communities at 38 US-affiliated Pacific islands, spanning from near pristine to highly human populated. Reef fish community size spectra slopes ‘steepened’ steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. In contrast, total fish community biomass was substantially lower on inhabited islands than uninhabited ones, regardless of human population density. Comparing the relationship between size spectra and reef fish biomass, we found that on populated islands size spectra steepened linearly with declining biomass, whereas on uninhabited islands size spectra and biomass were unrelated. Size spectra slopes also were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to biophysical conditions, being influenced by oceanic productivity, sea surface temperature, island type, and habitat complexity. Our results suggest that community size structure is more robust than total fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems.



2017 ◽  
Author(s):  
Melissa R. Luna ◽  
◽  
Suzanne O'Connell ◽  
Joseph D. Ortiz ◽  
Michael C. Wizevich


1985 ◽  
Vol 28 (2) ◽  
pp. 405-410 ◽  
Author(s):  
Wesley E. Yates ◽  
Robert E. Cowden ◽  
Norman B. Akesson
Keyword(s):  


Author(s):  
Henglong Xu ◽  
Yong Jiang ◽  
Wei Zhang ◽  
Mingzhuang Zhu ◽  
Khaled A. S. Al-Rasheid ◽  
...  

The annual variations in body-size spectra of planktonic ciliate communities and their relationships to environmental conditions were studied based on a 12-month dataset (June 2007 to May 2008) from Jiaozhou Bay on the Yellow Sea coast of northern China. Based on the dataset, the body sizes of the ciliates, expressed as equivalent spherical diameters, included five ranks: S1 (5–35 μm); S2 (35–55 μm); S3 (55–75 μm); S4 (75–100 μm); and S5 (100–350 μm). These body-size ranks showed a clear temporal succession of dominance in the order of S2 (January–April) → S1 (May–July) → S4 (August–September) → S3 (October–December). Multivariate analyses showed that the temporal variations in their body-size patterns were significantly correlated with changes in environmental conditions, especially water temperature, salinity, dissolved oxygen concentration (DO) and nutrients. In terms of abundance, rank S2 was significantly correlated with water temperature, DO and nutrients, whereas ranks S4 and S5 were correlated with the salinity and nutrients respectively (P < 0.05). These results suggest that the body-size patterns of planktonic ciliate communities showed a clear temporal pattern during an annual cycle and significantly associated with environmental conditions in marine ecosystems.



1989 ◽  
Vol 20 (8) ◽  
pp. 1221-1224 ◽  
Author(s):  
Thomas Schumann ◽  
Richard Heimgartner




Sign in / Sign up

Export Citation Format

Share Document