On the uniqueness of symmetric bases in finite dimensional Banach spaces

1981 ◽  
Vol 40 (2) ◽  
pp. 97-117 ◽  
Author(s):  
Carsten Schütt
Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2346
Author(s):  
Almudena Campos-Jiménez ◽  
Francisco Javier García-Pacheco

In this paper we provide new geometric invariants of surjective isometries between unit spheres of Banach spaces. Let X,Y be Banach spaces and let T:SX→SY be a surjective isometry. The most relevant geometric invariants under surjective isometries such as T are known to be the starlike sets, the maximal faces of the unit ball, and the antipodal points (in the finite-dimensional case). Here, new geometric invariants are found, such as almost flat sets, flat sets, starlike compatible sets, and starlike generated sets. Also, in this work, it is proved that if F is a maximal face of the unit ball containing inner points, then T(−F)=−T(F). We also show that if [x,y] is a non-trivial segment contained in the unit sphere such that T([x,y]) is convex, then T is affine on [x,y]. As a consequence, T is affine on every segment that is a maximal face. On the other hand, we introduce a new geometric property called property P, which states that every face of the unit ball is the intersection of all maximal faces containing it. This property has turned out to be, in a implicit way, a very useful tool to show that many Banach spaces enjoy the Mazur-Ulam property. Following this line, in this manuscript it is proved that every reflexive or separable Banach space with dimension greater than or equal to 2 can be equivalently renormed to fail property P.


1996 ◽  
Vol 48 (4) ◽  
pp. 834-848 ◽  
Author(s):  
A. Jourani ◽  
L. Thibault

AbstractThis paper is devoted to extending formulas for the geometric approximate subdifferential and the Clarke subdifferential of extended-real-valued functions on Banach spaces. The results are strong enough to include completely the finite dimensional setting.


1971 ◽  
Vol 9 (4) ◽  
pp. 488-506 ◽  
Author(s):  
W. B. Johnson ◽  
H. P. Rosenthal ◽  
M. Zippin

2004 ◽  
Vol 53 (5) ◽  
pp. 1279-1289 ◽  
Author(s):  
Miguel Martin ◽  
Javier Meri ◽  
Angel Rodriguez-Palacios

1996 ◽  
Vol 56 (1-2) ◽  
pp. 190-195 ◽  
Author(s):  
Bernulf Wei�bach ◽  
Bernd Wernicke

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2066
Author(s):  
Messaoud Bounkhel ◽  
Mostafa Bachar

In the present work, we extend, to the setting of reflexive smooth Banach spaces, the class of primal lower nice functions, which was proposed, for the first time, in finite dimensional spaces in [Nonlinear Anal. 1991, 17, 385–398] and enlarged to Hilbert spaces in [Trans. Am. Math. Soc. 1995, 347, 1269–1294]. Our principal target is to extend some existing characterisations of this class to our Banach space setting and to study the relationship between this concept and the generalised V-prox-regularity of the epigraphs in the sense proposed recently by the authors in [J. Math. Anal. Appl. 2019, 475, 699–29].


Sign in / Sign up

Export Citation Format

Share Document