Many-point correlation-functions in quantum field theory

1955 ◽  
Vol 2 (1) ◽  
pp. 50-57 ◽  
Author(s):  
E. Freese
2007 ◽  
Vol 22 (06) ◽  
pp. 1181-1200 ◽  
Author(s):  
YASUMI ABE

We present a new procedure for quantizing field theory models on a noncommutative space–time. Our new quantization scheme depends on the noncommutative parameter explicitly and reduces to the canonical quantization in the commutative limit. It is shown that a quantum field theory constructed by this quantization yields exactly the same correlation functions as those of the commutative field theory, that is, the noncommutative effects disappear completely after the quantization. This implies, for instance, that the noncommutativity may be incorporated in the process of quantization, rather than in the action as conventionally done.


2013 ◽  
Vol 28 (07) ◽  
pp. 1350016 ◽  
Author(s):  
JUAN SEBASTIÁN ARDENGHI ◽  
ALFREDO JUAN ◽  
MARIO CASTAGNINO

The aim of this work is to apply the observable-state model for the quantum field theory of a ϕn self-interaction. We show how to obtain finite values for the two-point and n-point correlation functions without introducing counterterms in the Lagrangian. Also, we show how to obtain the renormalization group equation for the mass and the coupling constant. Finally, we find the dependence of the coupling constant with the energy scale and we discuss the validity of the observable-state model in terms of the projection procedure.


Author(s):  
Jean Zinn-Justin

This chapter discusses systematically the algebraic properties of perturbation theory in the example of a local, relativistic scalar quantum field theory (QFT). Although only scalar fields are considered, many results can be easily generalized to relativistic fermions. The Euclidean formulation of QFT, based on the density matrix at thermal equilibrium, is studied, mainly in the simpler zero-temperature limit, where all d coordinates, Euclidean time and space, can be treated symmetrically. The discussion is based on field integrals, which define a functional measure. The corresponding expectation values of product of fields called correlation functions are analytic continuations to imaginary (Euclidean) time of the vacuum expectation values of time-ordered products of field operators. They have also an interpretation as correlation functions in some models of classical statistical physics, in continuum formulations or, at equal time, of finite temperature QFT. The field integral, corresponding to an action to which a term linear in the field coupled to an external source J has been added, defines a generating functional Z(J) of field correlation functions. The functional W(J) = ln Z(J) is the generating functional of connected correlation functions, to which contribute only connected Feynman diagrams. In a local field theory connected correlation functions, as a consequence of locality, have cluster properties. The Legendre transform Γ(φ) [N1]of W(J) is the generating functional of vertex functions. To vertex functions contribute only one-line irreducible Feynman diagrams, also called one-particle irreducible (1PI).


1994 ◽  
Vol 08 (04) ◽  
pp. 403-415 ◽  
Author(s):  
Holger Frahm ◽  
V. E. Korepin

Exact Bethe Ansatz results on the spectrum of large but finite Hubbard chains in conjunction with methods from conformal quantum field theory can be used to obtain exact results for the asymptotic behaviour of correlation functions. We review this method and discuss some interesting consequences of the results.


2018 ◽  
Vol 30 (06) ◽  
pp. 1840006 ◽  
Author(s):  
Philippe Di Francesco ◽  
Fedor Smirnov

We explain a new method for finding the correlation functions for the XXX model which is based on the concepts of Operator Product Expansion of Quantum Field Theory on one hand and of fermionic bases for the XXX spin chain on the other. With this method, we are able to perform computations for up to 11 lattice sites. We show that these “experimental” data allow to guess exact formulae for the OPE coefficients. In memory of Ludwig Dmitrievich Faddeev


2021 ◽  
pp. 2150067
Author(s):  
Frank Saueressig ◽  
Amir Khosravi

We argue in a quantitative way that the unitarity principle of quantum field theory together with the quantum information bound on correlation functions is in tension with a space which is made out of disconnected patches at microscopic scales.


Sign in / Sign up

Export Citation Format

Share Document