Magnetic contributions to high energy inverse bremsstrahlung process

Pramana ◽  
1978 ◽  
Vol 10 (6) ◽  
pp. 559-562
Author(s):  
G Ramachandran ◽  
R S Keshavamurthy
2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Roman Pasechnik ◽  
Boris Kopeliovich ◽  
Irina Potashnikova

Production of heavy photons (Drell-Yan), gauge bosons, Higgs bosons, and heavy flavors, which is treated within the QCD parton model as a result of hard parton-parton collision, can be considered a bremsstrahlung process in the target rest frame. In this review, we discuss the basic features of the diffractive channels of these processes in the framework of color dipole approach. The main observation is a dramatic breakdown of diffractive QCD factorisation due to the interplay between soft and hard interactions, which dominates these processes. This observation is crucial for phenomenological studies of diffractive reactions in high energy hadronic collisions.


2009 ◽  
Vol 75 (3) ◽  
pp. 289-301 ◽  
Author(s):  
F. WANG ◽  
E. WECKERT ◽  
B. ZIAJA

AbstractWe estimate the total cross sections for field-stimulated photoemissions and photoabsorptions by quasi-free electrons within a non-equilibrium plasma evolving from the strong coupling to the weak coupling regime. Such a transition may occur within laser-created plasmas, when the initially created plasma is cold but the heating of the plasma by the laser field is efficient. In particular, such a transition may occur within plasmas created by intense vacuum ultraviolet (VUV) radiation from a free-electron laser (FEL) as indicated by the results of the first experiments performed by Wabnitz at the FLASH facility at DESY. In order to estimate the inverse bremsstrahlung cross sections, we use point-like and effective atomic potentials. For ions modelled as point-like charges, the total cross sections are strongly affected by the changing plasma environment. The maximal change of the cross sections may be of the order of 75 at the change of the plasma parameters: inverse Debye length, κ, in the range κ = 0 − 3 Å−1 and the electron density, ρe, in the range ρe = 0.01 − 1 Å−3. These ranges correspond to the physical conditions within the plasmas created during the first cluster experiments performed at the FLASH facility at DESY. In contrast, for the effective atomic potentials the total cross sections for photoemission and photoabsorption change only by a factor of seven at most in the same plasma parameter range. Our results show that the inverse bremsstrahlung cross section estimated with the effective atomic potentials is not affected much by the plasma environment. This observation validates the estimations of the enhanced heating effect obtained by Walters, Santra and Greene. This is important as this effect may be responsible for the high-energy absorption within clusters irradiated with VUV radiation.


1993 ◽  
Vol 49 (2) ◽  
pp. 161-180 ◽  
Author(s):  
S. H. Kim

It is shown that stimulated emission is an intrinsically incoherent-phase phenomenon arising from the uncertainty principle, and that therefore the laser gain cannot be described by any classical model, which must be coherent in all aspects. The force due to the net inverse-bremsstrahlung (‘NIB force’) acting on a high-energy electron beam travelling in an undulating field whose wave vector is collinear with the electron beam (‘collinear wiggler’) is found by extending the quantum kinetic theory of the free-electron laser. In the case that an axial electrostatic wave is used as the catalysing field for the net multi- photon inverse bremsstrahlung, it is shown that NIB acceleration is practical only when the potential amplitude (in terms of the electron energy) of the laser wave, [eA0], is comparable to or larger than the electron rest energy mc2.


2011 ◽  
Vol 20 (08) ◽  
pp. 1389-1397 ◽  
Author(s):  
WAN-LEI GUO ◽  
YUE-LIANG WU ◽  
YU-FENG ZHOU

We discuss an extended left-right symmetric model in which the decay of DM particle is induced by tiny soft charge-conjugation violating interactions, and calculate the spectra for cosmic-ray positrons, neutrinos and gamma-rays. The DM signals in the flux of high energy neutrinos can be significantly enhanced, as the triplets couple to both charged leptons and neutrinos. The predicted neutrino-induced muon flux can be several times larger than the case in which DM particle only directly decays into charged leptons. In addition, the charged components of the triplet give extra contributions to the high energy gamma-rays through internal bremsstrahlung process.


Sign in / Sign up

Export Citation Format

Share Document