Oxygen isotopic compositions of seawater in the Maxwell Bay of King George Island, West Antarctica

1997 ◽  
Vol 1 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Boo-Keun Khim ◽  
Byong-Kwon Park ◽  
Ho Il Yoon
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
P. J. Llanillo ◽  
C. M. Aiken ◽  
R. R. Cordero ◽  
A. Damiani ◽  
E. Sepúlveda ◽  
...  

AbstractWe examine the hydrographic variability induced by tides, winds, and the advance of the austral summer, in Maxwell Bay and tributary fjords, based on two recent oceanographic campaigns. We provide the first description in this area of the intrusion of relatively warm subsurface waters, which have led elsewhere in Antarctica to ice-shelf disintegration and tidewater glacier retreat. During flood tide, meltwater was found to accumulate toward the head of Maxwell Bay, freshening and warming the upper 70 m. Below 70 m, the flood tide enhances the intrusion and mixing of relatively warm modified Upper Circumpolar Deep Water (m-UCDW). Tidal stirring progressively erodes the remnants of Winter Waters found at the bottom of Marian Cove. There is a buoyancy gain through warming and freshening as the summer advances. In Maxwell Bay, the upper 105 m were 0.79 °C warmer and 0.039 PSU fresher in February than in December, changes that cannot be explained by tidal or wind-driven processes. The episodic intrusion of m-UCDW into Maxwell Bay leads to interleaving and eventually to warming, salinification and deoxygenation between 80 and 200 m, with important implications for biological productivity and for the mass balance of tidewater glaciers in the area.


2012 ◽  
Vol 18 ◽  
pp. 167-194 ◽  
Author(s):  
Benjamin H. Passey

Carbon isotopes in Neogene-age fossil teeth and paleosol carbonates are commonly interpreted in the context of past distributions of C3 and C4 vegetation. These two plant types have very different distributions in relation to climate and ecology, and provide a robust basis for reconstructing terrestrial paleoclimates and paleoenvironments during the Neogene. Carbon isotopes in pre-Neogene fossil teeth are usually interpreted in the context of changes in the δ13C value of atmospheric CO2, and variable climate-dependent carbon-isotope discrimination in C3 plants. Carbon isotopes in pre-Neogene soil carbonates can be used to estimate past levels of atmospheric CO2. Oxygen isotopes in fossil teeth and paleosol carbonates primarily are influenced by the oxygen isotopic compositions of ancient rainfall and surface waters. The oxygen isotopic composition of rainfall is has a complex, but tractable, relationship with climate, and variably relates to temperature, elevation, precipitation amount, and other factors. Mammal species that rely on moisture in dietary plant tissues to satisfy their water requirements (rather than surface drinking water) may have oxygen isotopic compositions that track aridity. Thus, oxygen isotopes of fossil mammals can place broad constraints on paleoaridity. Carbonate clumped isotope thermometry allows for reconstruction of soil temperatures at the time of pedogenic carbonate mineralization. The method is unique because it is the only thermodynamically based isotopic paleothermometer that does not require assumptions about the isotopic composition of the fluid in which the archive mineral formed. Soil temperature reflects a complex interplay of air temperature, solar radiative heating, latent heat effects, soil thermal diffusivity, and seasonal variations of these parameters. Because plants and most animals live in and/or near the soil, soil temperature is an important aspect of terrestrial (paleo)climate.


Sign in / Sign up

Export Citation Format

Share Document