heat effects
Recently Published Documents


TOTAL DOCUMENTS

525
(FIVE YEARS 92)

H-INDEX

37
(FIVE YEARS 6)

Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 15-38
Author(s):  
V.V. Strelko ◽  
◽  
Yu.I. Gorlov ◽  

In this paper, the nature of the chemical activity of pyrolyzed nanostructured carbon materials (PNCM), in particular active carbon (AC), in reactions of electron transfer considered from a single position, reflecting the priority role of paramagnetic centers and edge defunctionaled carbon atoms of carbon microcristallites (CMC) due to pyrolysis of precursors. Clusters in the form of polycyclic aromatic hydrocarbons with open (OES) and closed (CES) electronic shells containing terminal hydrogen atoms (or their vacancies) and different terminal functional groups depending on specific model reactions of radical recombination, combination, replacement and elimination were used to model of nanographenes (NG) and CM. Quantum-chemical calculations of molecular models of NG and CMC and heat effects of model reactions were performed in frames of the density functional theory (DFT) using extended valence-splitted basis 6-31G(d) with full geometry optimization of concrete molecules, ions, radicals and NG models. The energies of boundary orbitals were calculated by means of the restricted Hartry-Fock method for objects with closed (RHF) and open (ROHF) electronic shells. The total energies of small negative ions (HOO-, HO-) and anion-radical О2•‾) were given as the sum of calculated total energies of these compounds and their experimental electron affinities. The estimation of probability of considered chemical transformations was carried out on the base on the well-known Bell-Evans-Polyani principle about the inverse correlation of the thermal effects of reactions and its activation energies. It is shown that the energy gap ΔЕ (energy difference of boundary orbitals levels) in simulated nanographens should depend on a number of factors: the periphery structure of models, its size and shape, the number and nature of various structural defects, electronic states of NG. When considering possible chemical transformations on the AC surface, rectangular models of NG were used, for which the simple classification by type and number of edge structural elements of the carbon lattice was proposed. Quantum chemical calculations of molecular models of NG and CNC and the energy of model reactions in frames of DTF showed that the chemisorption of free radicals (3O2 and N•O), as recombination at free radical centers (FRC), should occur with significant heat effects. Such calculations give reason to believe that FRC play an important role in formation of the functional cover on the periphery of NG in CMC of studied materials. On the base of of cluster models of active carbon with OES new ideas about possible reactions mechanisms of radical-anion О2•‾ formation and decomposition of hydrogen peroxide on the surface of active carbon are offered. Explanation of increased activity of AC reduced by hydrogen in H2O2 decomposition is given. It is shown that these PNCM models, as first of all AC, allow to adequately describe their semiconductor nature and acid-base properties of such materials.


Author(s):  
Andrey Makarov ◽  
Gennadii V Afonin ◽  
Alexander S Aronin ◽  
Nikolai Kobelev ◽  
Vitaly A Khonik

Abstract We present a novel approach to the understanding of heat effects induced by structural relaxation of metallic glasses. The key idea consists in the application of a general thermodynamic equation for the entropy change due to the evolution of a non-equilibrium part of a complex system. This non-equilibrium part is considered as a defect subsystem of glass and its evolution is governed by local thermoactivated rearrangements with a Gibbs free energy barrier proportional to the high-frequency shear modulus. The only assumption on the nature of the defects is that they should provide a reduction of the shear modulus – a diaelastic effect. This approach allows to determine glass entropy change upon relaxation. On this basis, the kinetics of the heat effects controlled by defect-induced structural relaxation is calculated. A very good agreement between the calculation and specially performed calorimetric and shear modulus measurements on three metallic glasses is found.


2021 ◽  
Vol 25 (12) ◽  
pp. 6523-6545
Author(s):  
Michael Peichl ◽  
Stephan Thober ◽  
Luis Samaniego ◽  
Bernd Hansjürgens ◽  
Andreas Marx

Abstract. Agricultural production is highly dependent on the weather. The mechanisms of action are complex and interwoven, making it difficult to identify relevant management and adaptation options. The present study uses random forests to investigate such highly non-linear systems for predicting yield anomalies in winter wheat at district levels in Germany. In order to take into account sub-seasonality, monthly features are used that explicitly take soil moisture into account in addition to extreme meteorological events. Clustering is used to show spatially different damage potentials, such as a higher susceptibility to drought damage from May to July in eastern Germany compared to the rest of the country. In addition, relevant heat effects are not detected if the clusters are not sufficiently defined. The variable with the highest importance is soil moisture in March, where higher soil moisture has a detrimental effect on crop yields. In general, soil moisture explains more yield variations than the meteorological variables. The approach has proven to be suitable for explaining historical extreme yield anomalies for years with exceptionally high losses (2003, 2018) and gains (2014) and the spatial distribution of these anomalies. The highest test R-squared (R2) is about 0.68. Furthermore, the sensitivity of yield variations to soil moisture and extreme meteorological conditions, as shown by the visualization of average marginal effects, contributes to the promotion of targeted decision support systems.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3274
Author(s):  
Evgeny M. Strizhenov ◽  
Sergey S. Chugaev ◽  
Ilya E. Men’shchikov ◽  
Andrey V. Shkolin ◽  
Anatoly A. Zherdev

Adsorbed natural gas (ANG) technology is a promising alternative to traditional compressed (CNG) and liquefied (LNG) natural gas systems. Nevertheless, the energy efficiency and storage capacity of an ANG system strongly depends on the thermal management of its inner volume because of significant heat effects occurring during adsorption/desorption processes. In the present work, a prototype of a circulating charging system for an ANG storage tank filled with a monolithic nanoporous carbon adsorbent was studied experimentally under isobaric conditions (0.5–3.5 MPa) at a constant volumetric flow rate (8–18 m3/h) or flow mode (Reynolds number at the adsorber inlet from 100,000 to 220,000). The study of the thermal state of the monolithic adsorbent layer and internal heat exchange processes during the circulating charging of an adsorbed natural gas storage system was carried out. The correlation between the gas flow mode, the dynamic gas flow temperature, and the heat transfer coefficient between the gas and adsorbent was determined. A one-dimensional mathematical model of the circulating low-temperature charging process was developed, the results of which correspond to the experimental measurements.


2021 ◽  
Author(s):  
Hadi Soltanifard ◽  
Abdolreza Kashki ◽  
Mokhtar Karami

Abstract Land Surface Temperature (LST), in particular for the urban environment, is a key indicator to characterize urban heat changes, urban climate, global environmental change, and human-environment interactions. However, due to differences in the local spatial variations of LST and the related influence factors, few studies have discussed the spatial non-stationarity and spatial scale effects within urban areas. Moreover, in cities such as Mashhad, which are located in a hot and dry climate, have been less studied of the relationship between LST and urban influencing factors on a neighborhood scale. In the present study, the spatial distribution of the mean LST was evaluated in association with the 16 explanatory indices at the neighborhood's level in Mashhad City, Iran, as a case study. To assess the main components contributing to the LST variations, Principal Components Analysis (PCA) was employed in this study. Additionally, Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR) models were used to explore the spatially varying relationships and identify the model's efficiency at the neighborhood's scale. Our findings showed the five most important components contributing to LST variances, explaining 86.2% of the variability. The most negative relationship was observed between LST and the morphological features of neighborhoods (PC3). In contrast, the landscape composition of the green patches (PC2) exhibited the lowest negative impacts on LST changes. Moreover, road and traffic density characteristics of the neighborhoods (PC4) were the only effective components to alert the average LST positively. With R2= 0.678, AIC c= 2125.6, and Moran's I= 0.018, the results revealed that the GWR model had better efficiency than the corresponding non-spatial OLS model in terms of the goodness of fits. It suggests that the GWR model has more ability than the OLS one to predict LST intensities and characterize spatial non-stationary. Therefore, it can be applied to adapt more effective strategies in planning and designing the urban neighborhoods for mitigation of the adverse heat effects.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012053
Author(s):  
V Gori ◽  
V Marincioni ◽  
H Altamirano-Medina

Abstract Cavity wall is one of the most common construction types in temperate maritime climates, including the UK. However, water penetration may lead to damp within the structure, freeze-thaw damage at the outer surface and a reduction in thermal resistance. The magnitude of wetting effects on the energy performance of cavity walls is still unclear, with potentially significant implications for climate-change-mitigation strategies. This paper investigates the thermophysical performance of uninsulated and insulated cavity walls and its degradation as the element is wettened. Experiments were performed in a hygrothermal laboratory where two cavity-wall specimens (one of which coated with external waterproofing treatment) were tested under a high wind-driven rain exposure. Changes in the thermophysical performance between dry and wet conditions were evaluated through U-value testing and Bayesian inference. Substantial U-value increase was observed for wet uninsulated specimens (compared to dry conditions); conversely, closer U-value ranges were obtained when insulated with EPS grey beads. Moreover, latent-heat effects through the external masonry leaf of the untreated specimen were predicted by the Bayesian framework. Results suggest a negligible efficacy of waterproofing surface treatments as strategies for the reduction of heat transfer within the element, and possible effects of these agents on the evaporative and drying process.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012084
Author(s):  
Sergey Chugaev ◽  
Evgeny Strizhenov ◽  
Ilya Men’shchikov ◽  
Andrey Shkolin

Abstract Adsorbed natural gas (ANG) technology is a promising alternative to traditional compressed (CNG) and liquefied (LNG) natural gas systems. Nevertheless, energy efficiency and storage capacity of ANG system strongly depends on thermal management of its inner volume because of significant heat effects occurring during adsorption/desorption processes. At the same time low-temperature charging of ANG system provides its higher storage capacity as well as increased fire and explosion safety due to lower operating pressure and “bound-state” of gas molecules with the surface of adsorbent. In present work, a prototype of low-temperature circulating charging system for ANG storage tank filled with shaped microporous carbon adsorbent was studied experimentally in wide ranges of pressures (0.5-3.5 MPa) and gas flow rates (8-18 m3/h).


Author(s):  
Josh Foster ◽  
James W. Smallcombe ◽  
Simon Hodder ◽  
Ollie Jay ◽  
Andreas D. Flouris ◽  
...  

AbstractHeat stress decreases human physical work capacity (PWC), but the extent to which solar radiation (SOLAR) compounds this response is not well understood. This study empirically quantified how SOLAR impacts PWC in the heat, considering wide, but controlled, variations in air temperature, humidity, and clothing coverage. We also provide correction equations so PWC can be quantified outdoors using heat stress indices that do not ordinarily account for SOLAR (including the Heat Stress Index, Humidex, and Wet-Bulb Temperature). Fourteen young adult males (7 donning a work coverall, 7 with shorts and trainers) walked for 1 h at a fixed heart rate of 130 beats∙min−1, in seven combinations of air temperature (25 to 45°C) and relative humidity (20 or 80%), with and without SOLAR (800 W/m2 from solar lamps). Cumulative energy expenditure in the heat, relative to the work achieved in a cool reference condition, was used to determine PWC%. Skin temperature was the primary determinant of PWC in the heat. In dry climates with exposed skin (0.3 Clo), SOLAR caused PWC to decrease exponentially with rising air temperature, whereas work coveralls (0.9 Clo) negated this effect. In humid conditions, the SOLAR-induced reduction in PWC was consistent and linear across all levels of air temperature and clothing conditions. Wet-Bulb Globe Temperature and the Universal Thermal Climate Index represented SOLAR correctly and did not require a correction factor. For the Heat Stress Index, Humidex, and Wet-Bulb Temperature, correction factors are provided enabling forecasting of heat effects on work productivity.


2021 ◽  
Vol 13 (21) ◽  
pp. 4268
Author(s):  
Lin Chen ◽  
Bin Zhou ◽  
Weidong Man ◽  
Mingyue Liu

Rapid urbanization has produced serious heat effects worldwide. However, the literature lacks a detailed study on heat effects based on the directions and types of urban expansion. In this work, a typical city with an extremely hot summer climate, Hangzhou, was selected as a case study to determine the relationships between the urban heat-effect dynamics and spatiotemporal patterns of impervious surface expansion. Based on long-term Landsat imagery, this study characterized the spatiotemporal patterns of urban expansion and normalized surface temperatures in Hangzhou City from 2000 to 2020 using object-based backdating classification and a generalized single-channel algorithm with the help of a land-use transfer matrix, expansion index, and spatial centroids. Relevant policies, industries, and traffic networks were discussed to help explain urban expansion and thermal environment changes. The results demonstrated that in 2020, the area of impervious surfaces covered 1139.29 km2. The majority of the gains were in farmland, water, and forests, and the annual growth rate was 32.12 km2/year beginning in 2000. During the expansion of impervious surfaces, the city warmed at a slower rate, and more thermal contributions came from sub-urban areas. The southeast-oriented expansion of impervious surfaces was the key reason for the spatiotemporal dynamics of the urban heat effects. The dominant urban edge expansion intensified the local heat effects. This research provides a Landsat-based methodology for better understanding the heat effects of urban expansion.


2021 ◽  
Vol 13 (20) ◽  
pp. 11268
Author(s):  
Laura M. Norman ◽  
Benjamin L. Ruddell ◽  
Deborah J. Tosline ◽  
Michael K. Fell ◽  
Blair P. Greimann ◽  
...  

The potential of ecological restoration and green infrastructure has been long suggested in the literature as adaptation strategies for a changing climate, with an emphasis on revegetation and, more recently, carbon sequestration and stormwater management. Tree planting and “natural” stormwater detention structures such as bioswales, stormwater detention basins, and sediment traps are popular approaches. However, the experimental verification of performance for these investments is scarce and does not address rock detention structures specifically. This 3-year study investigates the infiltration, peak flow mitigation, and microclimate performance of a natural wash stormwater retention installation using one-rock dams in an urban park in Phoenix, Arizona, USA. Field data collected during the study do not depict change in the hydrogeomorphology. However, hydrologic modeling, using data collected from the field, portrays decreases in peak flows and increases in infiltration at the treated sites. Additionally, we observe a lengthening of microclimate cooling effects following rainfall events, as compared with the untreated sites. In this urban arid land setting, the prospect that rock detention structures themselves could reduce warming or heat effects is promising.


Sign in / Sign up

Export Citation Format

Share Document