radiative heating
Recently Published Documents


TOTAL DOCUMENTS

811
(FIVE YEARS 164)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Alain Hauchecorne ◽  
Chantal Claud ◽  
Philippe Keckhut ◽  
Alexis Mariaccia

AbstractIn early spring the stratospheric zonal circulation reverses from westerly to easterly. The transition, called Stratospheric Final Warming (SFW), may be smooth and late, mainly controlled by the solar radiative heating of the polar region, or early and abrupt with rapid increase of polar temperature and deceleration of the zonal wind, forced by the planetary wave activity. Here we present a study, based on 71 years meteorological reanalysis data. Two composites of radiative and dynamical SFWs have been built. There is a very significant difference in the evolution during the year of polar temperature and 60°N zonal wind between the two composites. The state of the polar vortex on given month is anticorrelated with its state 2 to 3 months earlier. Early winter is anticorrelated with mid-winter and mid-winter with late winter/early spring. The summer stratosphere keeps a memory of its state in April–May after the SFW until late June.


2022 ◽  
Vol 14 (2) ◽  
pp. 266
Author(s):  
Yuanxin Liang ◽  
Huizheng Che ◽  
Hong Wang ◽  
Wenjie Zhang ◽  
Lei Li ◽  
...  

Aerosols can affect vertical thermal structure during heavily polluted episodes (HPEs). Here, we selected four typical HPEs in 2018, which were further subdivided into dust and haze events. The vertical distribution of aerosols extinction coefficient (EC) and variations in columnar optical properties were investigated based on sun-photometer and Lidar observation at an urban site in Beijing. The vertical characteristics in shortwave radiative heating rate (HR) of aerosols were studied using NASA/Goddard radiative transfer model along with observational data. In the haze episode, EC layer is less than 1.5 km and shows strong scattering, with single-scattering albedo (SSA440nm) of ~0.97. The heating effects are observed at the middle and upper atmosphere, and slight heating effects are found at the lower layer. The mean HR within 1.5 km can be up to 16.3 K day−1 with EC of 1.27 km−1, whereas the HR within 0.5 km is only 1.3 K day−1. In the dust episode, dust aerosols present the absorption with SSA440nm of ~0.88, which would heat the lower atmosphere to promote vertical turbulence, and the height of EC layer can be up to 2.0–3.5 km. In addition, the strong heating effects of dust layer produced cooling effects near the surface. Therefore, the accurate measurement of aerosols optical properties in HPEs is of great significance for modeling aerosols direct radiative effects.


2022 ◽  
Author(s):  
Ayan Banerjee ◽  
Alexandre Martin ◽  
Savio J. Poovathingal

2022 ◽  
pp. 514-522
Author(s):  
Ronen Gottesman ◽  
Isabella Peracchi ◽  
Jason L. Gerke ◽  
Rowshanak Irani ◽  
Fatwa F. Abdi ◽  
...  

2022 ◽  
Vol 17 (1) ◽  
pp. 014040
Author(s):  
Francesco De Rovere ◽  
Davide Zanchettin ◽  
Michael J McPhaden ◽  
Angelo Rubino

Abstract We assess the radiative heating error affecting marine air temperature (MAT) measurements in the Tropical Atmosphere Ocean array. The error in historical observations is found to be ubiquitous across the array, spatially variable and approximately stationary in time. The error induces spurious warming during daytime hours, but does not affect night-time temperatures. The range encompassing the real, unknown daily- and monthly-mean values is determined using daytime and night-time mean temperatures as upper and lower limits. The uncertainty in MAT is less than or equal to 0.5 °C and 0.2 °C for 95% of daily and monthly estimates, respectively. Uncertainties impact surface turbulent heat flux estimates, with potentially significant influences on the quantification of coupled ocean-atmosphere processes.


2021 ◽  
pp. 1-66
Author(s):  
Adam B. Sokol ◽  
Casey J. Wall ◽  
Dennis L. Hartmann ◽  
Peter N. Blossey

Abstract Satellite observations of tropical maritime convection indicate an afternoon maximum in anvil cloud fraction that cannot be explained by the diurnal cycle of deep convection peaking at night. We use idealized cloud-resolving model simulations of single anvil cloud evolution pathways, initialized at different times of the day, to show that tropical anvil clouds formed during the day are more widespread and longer lasting than those formed at night. This diurnal difference is caused by shortwave radiative heating, which lofts and spreads anvil clouds via a mesoscale circulation that is largely absent at night, when a different, longwave-driven circulation dominates. The nighttime circulation entrains dry environmental air that erodes cloud top and shortens anvil lifetime. Increased ice nucleation in more turbulent nighttime conditions supported by the longwave cloud top cooling and cloud base heating dipole cannot overcompensate for the effect of diurnal shortwave radiative heating. Radiative-convective equilibrium simulations with a realistic diurnal cycle of insolation confirm the crucial role of shortwave heating in lofting and sustaining anvil clouds. The shortwave-driven mesoscale ascent leads to daytime anvils with larger ice crystal size, number concentration, and water content at cloud top than their nighttime counterparts.


Abstract Understanding the connections between latent heating from precipitation and cloud radiative effects is essential for accurately parameterizing cross-scale links between cloud microphysics and global energy and water cycles in climate models. While commonly examined separately, this study adopts two cloud impact parameters (CIPs), the surface radiative cooling efficiency, Rc, and atmospheric radiative heating efficiency, Rh, that explicitly couple cloud radiative effects and precipitation to characterize how efficiently precipitating cloud systems influence the energy budget and water cycle using A-Train observations and two reanalyses. These CIPs exhibit distinct global distributions that suggest cloud energy and water cycle coupling are highly dependent on cloud regime. The dynamic regime (ω500) controls the sign of Rh, while column water vapor (CWV) appears to be the larger control on the magnitude. The magnitude of Rc is highly coupled to the dynamic regime. Observations show that clouds cool the surface very efficiently per unit rainfall at both low and high sea surface temperature (SST) and CWV, but reanalyses only capture the former. Reanalyses fail to simulate strong Rh and moderate Rc in deep convection environments but produce stronger Rc and Rh than observations in shallow, warm rain systems in marine stratocumulus regions. While reanalyses generate fairly similar climatologies in the frequency of environmental states, the response of Rc and Rh to SST and CWV results in systematic differences in zonal and meridional gradients of cloud atmospheric heating and surface cooling relative to A-Train observations that may have significant implications for global circulations and cloud feedbacks.


2021 ◽  
Vol 38 (12) ◽  
pp. 2061-2070

Abstract Surface temperature measurements with naturally ventilated (NV) sensors over the Antarctic Plateau are largely subject to systematic errors caused by solar radiative heating. Here we examined the radiative heating error in Dronning Maud Land on the East Antarctic Plateau using both the newly installed automatic weather stations (AWSs) at NDF and Relay Station and the existing AWSs at Relay Station and Dome Fuji. Two types of NV shields were used in these AWSs: a multiplate radiation shield and a simple cylinder-shaped shield. In austral summer, the temperature bias between the force-ventilated (FV) sensor and the NV sensor never reached zero because of continuous sunlight. The hourly mean temperature errors reached up to 8°C at noon on a sunny day with weak wind conditions. The errors increased linearly with increasing reflected shortwave radiation and decreased nonlinearly with increasing wind speed. These features were observed in both the multiplate and the cylinder-shaped shields. The magnitude of the errors of the multiplate shield was much larger than that of the cylinder-shaped shield. To quantify the radiative errors, we applied an existing correction model based on the regression approach and successfully reduced the errors by more than 70% after the correction. This indicates that we can use the corrected temperature data instead of quality controlled data, which removed warm bias during weak winds in inland Dronning Maud Land.


Vestnik MGSU ◽  
2021 ◽  
pp. 1599-1607
Author(s):  
Mikhail V. Bodrov ◽  
Aleksandr A. Smykov

Introduction. It has been repeatedly proven that the use of radiant heating systems leads to an increase in the environmental safety of industrial premises by increasing their energy efficiency. The most promising solution is the use of gas infrared emitters, in which there is no intermediate coolant, and the heat of combustion of the gas enters the room. However, such a solution has a number of limitations on gas availability, comfort and fire hazard. Also, a highly efficient solution is the use of water infrared emitters, which can be represented by emitting panels or emitting profiles that use an intermediate coolant, but do not have many limitations inherent in gas systems. Materials and methods. This study was conducted in the Laboratory of radiant Heating of NNGASU and is devoted to the study of the peculiarities of the formation of the temperature regime in rooms heated by water infrared radiators, as well as the thermal regime of external enclosing structures in these rooms. Results. Based on the results of the experiments, the authors concluded about the formed thermal regime in rooms with heating systems based on water infrared emitters. It is proved that the use of radiant heating leads to a more uniform temperature regime in a heated room, and less overheating of the room covering than when using convective heating systems. Conclusions. The energy efficiency of the use of radiant heating systems based on water infrared emitters has been proven. The study showed that the system of water radiant heating allows to reduce the gradient of air temperature in height not only in large-volume rooms, such as workshops, depots, gyms, but also in rooms with a low height of the coating location. This feature allows you to reduce heat losses through the coating. The temperature regime in the working area of the room with the use of radiant water heating, in comparison with convective, remains unchanged.


2021 ◽  
Vol 922 (2) ◽  
pp. 244
Author(s):  
Linfeng Wan ◽  
Xi Zhang ◽  
Tanguy Bertrand

Abstract The temperature profile of Pluto’s atmosphere has generally been assumed in a radiative–conductive equilibrium. Recent studies further highlighted the importance of radiative heating and cooling effects by haze particles. In this study, we update results from Zhang et al. by taking into account the icy haze composition proposed by Lavvas et al., and find that radiation of such an icy haze could still dominate the energy balance in the middle and upper atmosphere and explain the cold temperature observed by New Horizons. However, additional considerations are needed to explain the rapid decrease in temperature toward the icy surface at altitudes <25 km. We propose that vertical eddy heat transport might help maintain radiative–diffusive equilibrium in the lower atmosphere. In this scenario, our radiative–conductive–diffusive model (including both gas and haze) would match observations if the eddy diffusivity is on the order of 103 cm2 s−1. Alternatively, if eddy heat transport is not effective on Pluto, in order to match observations, haze albedo must increase rapidly with decreasing altitude and approach unity near the surface. This is a plausible result of additional ice condensation and/or cloud formation. In this scenario, haze radiation might still dominate over gas radiation and heat conduction to maintain radiative equilibrium. Better constraints on haze albedo at ultraviolet and visible wavelengths would be a key to distinguish these two scenarios. Future mid-infrared observations from the James Webb Space Telescope could also constrain the thermal emission and haze properties in Pluto’s lower atmosphere.


Sign in / Sign up

Export Citation Format

Share Document