Structural optimization of a centrifugal impeller using differential evolution in CATIA™ environment

2007 ◽  
Vol 7 (2) ◽  
pp. 185-211 ◽  
Author(s):  
I. M. Valakos ◽  
M. S. Ntipteni ◽  
I. K. Nikolos
Author(s):  
Ali Kaveh ◽  
S.R. Hoseini Vaez ◽  
Pedram Hosseini

In this study, the Modified Dolphin Monitoring (MDM) operator is used to enhance the performance of some metaheuristic algorithms. The MDM is a recently presented operator that controls the population dispersion in each iteration. Algorithms are selected from some well-established algorithms. Here, this operator is applied on Differential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Vibrating Particles System (VPS), Enhanced Vibrating Particles System (EVPS), Colliding Bodied Optimization (CBO) and Harmony Search (HS) and the performance of these algorithms are evaluated with and without this operator on three well-known structural optimization problems. The results show the performance of this operator on these algorithms for the best, the worst, average and average weight of the first quarter of answers.


2011 ◽  
Vol 383-390 ◽  
pp. 672-677
Author(s):  
Juan Zhou ◽  
Duo Xin Zhang ◽  
Xian Liang Liu

The traditional method applying to solve continuous variable optimization problems is not suit for flume structural optimization design with hybrid discrete variable. According to the mathematical model of structural optimum design of the prestressed U-shell flumes, differential evolution (DE) algorithm was introduced to flume structural optimization design. In order to improve the population’s diversity and the ability of escaping from the local optimum, a self-adapting crossover probability factor was presented. Furthermore, a chaotic sequence based on logistic map was employed to self-adaptively adjust mutation factor based on linear crossover, which can improve the convergence of DE algorithm. Dynamic penalty function, to transform the constrained problem to unconstrained one, was employed. The result shows that, compared with the original design scheme, the optimization design scheme can greatly reduce the amount of prestressed reinforcement. The construction cost of both the flume and the whole project can be reduced accordingly.


Sign in / Sign up

Export Citation Format

Share Document