A study on ranked bidirectional evolutionary structural optimization (R-BESO) method for fully stressed structure design based on displacement sensitivity

2007 ◽  
Vol 21 (12) ◽  
pp. 1994-2004 ◽  
Author(s):  
Chung-Hyun Ryu ◽  
Young-Shin Lee
2013 ◽  
Vol 420 ◽  
pp. 346-351
Author(s):  
Tien Tung Chung ◽  
Jia Pei Wang ◽  
Yan Zuo Chen ◽  
Ta Chuan Liu

This paper proposes a new bi-directional evolutionary structural optimization (BESO) method with draw direction constraints. Draw direction constraints, defined by required manufacturing process, are achieved by modifying element removal/addition criteria such that elements are removed from the top surface of the draw direction to the inner design domain. The optimized design with draw direction constraints is free from hollow or closed cavity geometries which are infeasible for manufacturing. A stiffness design of a motor front cover is carried out to show the ability of the proposed method in practical mechanical design problems.


2013 ◽  
Vol 438-439 ◽  
pp. 445-450 ◽  
Author(s):  
Xiao Lei Yan ◽  
Xiao Dong Huang ◽  
Yi Min Xie

Different from the independent optimization of macrostructures or materials, a two-scale topology optimization algorithm is developed in this paper based on the bi-directional evolutionary structural optimization (BESO) method for concurrently designing a macrostructure and its composite microstructure. The objective is to minimize the mean compliance of the structure which is composed of a two-phase composite. The effective properties of the composite are calculated through the homogenization method and integrated into the finite element analysis of the structure. Sensitivity analysis for the structure and microstructure is conducted by the adjoint method. Based on the derived sensitivity numbers, the BESO approach is applied for iteratively updating the topologies for both the structure at the macro level and the microstructure of composite at the micro level. Numerical examples are presented to validate the effectiveness of the proposed optimization algorithm.


2013 ◽  
Vol 438-439 ◽  
pp. 439-444
Author(s):  
Yi Min Xie ◽  
Zhi Hao Zuo ◽  
Xiao Dong Huang ◽  
Ji Wu Tang ◽  
Xiao Ying Yang ◽  
...  

Novel and efficient structural and material designs can be realized by topology optimization that is capable of maximizing the performance of structural systems under given constraints. The bi-directional evolutionary structural optimization (BESO) method has been developed into an effective tool for topology optimization of load-bearing structures and materials. The latest advances of BESO are aimed at expanding its practical applications to a wider range of structural systems on both macro and micro scales. This paper presents recent developments of BESO for optimal design problems of a variety of structural systems ranging from buildings of large scales to materials of micro scales. Selected applications are introduced to demonstrate the capability of BESO. Examples presented in this paper are based on research and industrial projects of the Centre for Innovative Structures and Materials (http://www.rmit.edu.au/research/cism) at RMIT University.


2013 ◽  
Vol 572 ◽  
pp. 185-188 ◽  
Author(s):  
Xiao Yan Teng ◽  
Jia Shan Han ◽  
Liang Peng

Based on the bi-directional evolutionary structural optimization (BESO), the method of determining the adhesion position of the damping material is proposed in this paper, which is applicable to the vibration damping of ship plate. In this method, the needed amount of damping material is taken as the constraint condition, and the maximization of one natural vibration frequency of the structure is taken as the target function. A thin plate structure with both ends constraints has been taken as an example to get the best topology structure of its adhesion damper by taking the BESO method. The result of optimization shows that it still meets the damping requirements when the needed amount of damping material decreases by about 50% of the original amount. The reasonable result demonstrates the effectiveness and engineering value of the method.


2012 ◽  
Vol 204-208 ◽  
pp. 4422-4428
Author(s):  
Da Ke Zhang ◽  
Wen Pan Zhang ◽  
Han He ◽  
Chong Wang

The efficiency of the element removal or addition is of significance for evolutionary structural optimization (ESO) process. The key is to find an appropriate rejection criterion (RC) which allows to assess the contribution of each element to the specified behavior(stress, stiffness, displacement, etc.)of the structure, and to subsequently remove elements with least contribution. This paper proposed a varying elements removal ratio (VERR) method which uses a larger ERR (Element Rejection Ratio) value at early iterations where exist a lot of redundant material, and decreases the value of ERR in the optimal process to lessen the number of elements removed at later iterations. Meanwhile, this paper proposed a strategy for element addition based on stress level and the contribution of elements to the structure in order to decide which elements should be added to the model and the sequence of the element addition. With the proposed VERR and the strategy, the optimization procedure of the structure evolves more quickly and smoothly.


Sign in / Sign up

Export Citation Format

Share Document