Stability analysis of anti-dip bedding rock slopes using a limit equilibrium model combined with bi-directional evolutionary structural optimization (BESO) method

2021 ◽  
Vol 134 ◽  
pp. 104116
Author(s):  
Tingting Liu ◽  
Luyang Ding ◽  
Fei Meng ◽  
Xinping Li ◽  
Yun Zheng
2020 ◽  
Vol 105 ◽  
pp. 103562
Author(s):  
Xiao Zhang ◽  
Mingnian Wang ◽  
Zhilong Wang ◽  
Jiawang Li ◽  
Jianjun Tong ◽  
...  

2013 ◽  
Vol 11 (01) ◽  
pp. 1350044 ◽  
Author(s):  
SHUHONG WANG ◽  
PENGPENG NI

Rock slopes stability has been one of the fundamental issues facing geotechnical engineering researchers. Due to the pre-existing joints, the intactness of the rock is weakened. The mechanical characteristics are changed correspondingly along with joint-induced stress redistribution within the rock mass if the sliding limit at the joint or part of it is exceeded. In this study, spatial block topological identification techniques are applied to distinguish all blocks cut by 3D finite random or fixed discontinuities. Based on the available photographic information of rock slopes, the sliding forces and the corresponding factor of safety are evaluated through limit equilibrium conditions by the classic block theory. The rock slope stability analysis software, GeoSMA-3D (Geotechnical Structure and Model Analysis), satisfying the requirements of spatial block modeling, joint plane simulation, key block identification and analysis and sliding process display, was developed. The application of such a software on the analysis of a rock slope, which is located near the inlet of Daiyuling No. 1 tunnel on the Zhuanghe–Gaizhou highway networks, was performed. The assessed results were compared with the monitored data to validate the effectiveness of such software.


2013 ◽  
Vol 420 ◽  
pp. 346-351
Author(s):  
Tien Tung Chung ◽  
Jia Pei Wang ◽  
Yan Zuo Chen ◽  
Ta Chuan Liu

This paper proposes a new bi-directional evolutionary structural optimization (BESO) method with draw direction constraints. Draw direction constraints, defined by required manufacturing process, are achieved by modifying element removal/addition criteria such that elements are removed from the top surface of the draw direction to the inner design domain. The optimized design with draw direction constraints is free from hollow or closed cavity geometries which are infeasible for manufacturing. A stiffness design of a motor front cover is carried out to show the ability of the proposed method in practical mechanical design problems.


2013 ◽  
Vol 438-439 ◽  
pp. 445-450 ◽  
Author(s):  
Xiao Lei Yan ◽  
Xiao Dong Huang ◽  
Yi Min Xie

Different from the independent optimization of macrostructures or materials, a two-scale topology optimization algorithm is developed in this paper based on the bi-directional evolutionary structural optimization (BESO) method for concurrently designing a macrostructure and its composite microstructure. The objective is to minimize the mean compliance of the structure which is composed of a two-phase composite. The effective properties of the composite are calculated through the homogenization method and integrated into the finite element analysis of the structure. Sensitivity analysis for the structure and microstructure is conducted by the adjoint method. Based on the derived sensitivity numbers, the BESO approach is applied for iteratively updating the topologies for both the structure at the macro level and the microstructure of composite at the micro level. Numerical examples are presented to validate the effectiveness of the proposed optimization algorithm.


2013 ◽  
Vol 438-439 ◽  
pp. 439-444
Author(s):  
Yi Min Xie ◽  
Zhi Hao Zuo ◽  
Xiao Dong Huang ◽  
Ji Wu Tang ◽  
Xiao Ying Yang ◽  
...  

Novel and efficient structural and material designs can be realized by topology optimization that is capable of maximizing the performance of structural systems under given constraints. The bi-directional evolutionary structural optimization (BESO) method has been developed into an effective tool for topology optimization of load-bearing structures and materials. The latest advances of BESO are aimed at expanding its practical applications to a wider range of structural systems on both macro and micro scales. This paper presents recent developments of BESO for optimal design problems of a variety of structural systems ranging from buildings of large scales to materials of micro scales. Selected applications are introduced to demonstrate the capability of BESO. Examples presented in this paper are based on research and industrial projects of the Centre for Innovative Structures and Materials (http://www.rmit.edu.au/research/cism) at RMIT University.


Sign in / Sign up

Export Citation Format

Share Document