optimized design
Recently Published Documents


TOTAL DOCUMENTS

2265
(FIVE YEARS 638)

H-INDEX

36
(FIVE YEARS 9)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Z. Ebrahimpour ◽  
Seyyed Ali Farshad ◽  
M. Sheikholeslami

Purpose This paper scrutinizes exergy loss and hydrothermal analysis of Linear Fresnel Reflector (LFR) unit by means of FLUENT. Several mirrors were used to guide the solar radiation inside the receiver, which has parabolic shape. Radiation model was used to simulate radiation mode. Design/methodology/approach Heat losses from receiver should be minimized to reach the optimized design. Outputs were summarized as contours of incident radiation, isotherm and streamline. Outputs were classified in terms of contours and plots to depict the influence of temperature of hot wall, wind velocity and configurations on performance of Linear Fresnel Reflector (LFR) based on thermal and exergy treatment. Four arrangements for LFR units are considered and all of them have same height. Findings Greatest Nu and Ex can be obtained for case D due to the highest heat loss from hot wall. Share of radiative heat flux relative to total heat flux is about 94% for case D. In case D when Tr = 0.388, As hext rises from 5 to 20, Nutotal enhances about 11.42% when Tr = 0.388. By selecting case D instead of case A, Ex rises about 16.14% for lowest Tr. Nutotal and Ex of case D augment by 3.65 and 6.23 times with rise of Tr when hext = 5. To evaluate the thermal performance (ηth) of system, absorber pipe was inserted below the parabolic reflector and 12 mirrors were used above the ground. The outputs revealed that ηth decreases about 14.31% and 2.54% with augment of Tin and Q if other factors are minimum. Originality value This paper scrutinizes exergy loss and hydrothermal analysis of LFR unit by means of finite volume method. Several mirror used to guide the solar radiation inside the receiver, which has parabolic shape. DO model was used to simulate radiation mode. Heat losses from receiver should be minimized to reach the optimized design. Outputs were summarized as contours of incident radiation, isotherm and streamline.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Bowen Zhang ◽  
Nuo Chen ◽  
Xinda Lu ◽  
Yuhang Hu ◽  
Zihao Yang ◽  
...  

A chip-scale tunable optical filter is indispensable to meeting the demand for reconfigurability in wavelength division multiplexing systems, channel routing, and switching, etc. Here, we propose a new scheme of bandwidth tunable band-pass filters based on a parity-time (PT) symmetric coupled microresonator system. Large bandwidth tunability is realized on the basis of the tuning of the relative resonant frequency between coupled rings and by making use of the concept of the exception point (EP) in the PT symmetric systems. Theoretical investigations show that the bandwidth tuning range depends on the intrinsic loss of the microresonators, as well as on the loss contrast between the two cavities. Our proof-of-concept device confirms the tunability and shows a bandwidth tuning range from 21 GHz to 49 GHz, with an extinction ratio larger than 15 dB. The discrepancy between theory and experiment is due to the non-optimized design of the coupling coefficients, as well as to fabrication errors. Our design based on PT symmetry shows a distinct route towards the realization of tunable band-pass filters, providing new ways to explore non-Hermitian light manipulation in conventional integrated devices.


2022 ◽  
Vol 355 ◽  
pp. 02061
Author(s):  
Jiang Li ◽  
YongBin Li ◽  
Jinhua Tan ◽  
Zhimin Yang

Fully enclosed noise barrier has been used to prevent and control traffic noise pollution because of its effectiveness. It has become the best solution for controlling environmental noise of high-rise buildings from expressways, urban viaducts and railways that cross the crowded downtown area. However, its high cost has become an important retarding factor on its application and popularization, so reducing the cost become an urgent problem. The research theory, structure frame, sound absorbing and insulating materials are investigated for the fully enclosed noise barrier, so as to provide technical solutions for optimizing the design scheme and reducing the construction cost.


2022 ◽  
Vol 35 (1) ◽  
pp. 04021103
Author(s):  
Shoaib Ahmed Khan ◽  
Anwar Ali ◽  
Yang Shiyou ◽  
Shah Fahad ◽  
Jijun Tong
Keyword(s):  

Author(s):  
Jéssica Salomão Lourenção ◽  
Paulo Augusto Tonini Arpini ◽  
Gabriel Erlacher ◽  
Élcio Cassimiro Alves

Abstract The objective of this paper is to present the formulation of the optimization problem and its application to the design of concrete-filled composite columns with and without reinforcement steel bars, according to recommendations from NBR 8800:2008, NBR 16239:2013 and EN 1994-1-1:2004. A comparative analysis between the aforementioned standards is performed for various geometries considering cost, efficiency and materials in order to verify which parameters influence the solution of the composite column that satisfies the proposed problems. The solution of the optimization problem is obtained by using the genetic algorithm method featured in MATLAB’s guide toolbox. For the examples analyzed, results show that concretes with compressive strength greater than 50MPa directly influence the solution of the problem regarding cost and resistance to normal forces.


2022 ◽  
Vol 334 ◽  
pp. 03002
Author(s):  
Maria Alessandra Ancona ◽  
Michele Bianchi ◽  
Lisa Branchini ◽  
Francesco Catena ◽  
Andrea De Pascale ◽  
...  

The integration of renewable energy sources into the electricity system can contribute to the development of a low-carbon economy. However, due to the intermittency and non-programmability of these sources, problems related to the management of local electricity grids may occur. A possible solution or limitation to these issues is given by the electrical storage. In addition, in the next future, domestic micro-grids are expected to play a fundamental role in electric power networks, driving both the academic and industrial research interests in developing highly efficient and reliable conversion and storage technologies. In this study, the behavior of a small-scale hybrid energy system for hydrogen production and storage has been predicted, by means of a developed calculation model, and the operational strategy of the system has been optimized with the aim to maximize the hydrogen production. In addition, with the aim to maximize the overall solar-to-hydrogen chain efficiency, the whole system model has been applied to different operating scenarios, to identify the optimal management strategy to control it.


2022 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Faye Jin ◽  
Ran Tao ◽  
Ruofu Xiao

The blade shape parameters have a remarkable effect on the centrifugal pump performance. In order to reveal the relationship between these parameters and pump performance, a single channel was regarded as the research object to calculate its performance by numerical simulation, and the performance was measured on an experimental rig. The optimized ANN is proposed, and it is proved to be highly accurate. The ANN correlation coefficient of the total response could be above 0.997 after thousands of retaining. The sorts and degrees affecting performance parameters were found out by gray relation analysis. It was found that the blade angles at the leading edge were more influential for reaction force, head and minimum pressure, while the wrap angles had greater impact for efficiency. Furthermore, a multiple linear regression model was established to quantify the weight and trend of the influence of blade shape parameters on performance. The results provide a reference guide for the optimized design of centrifugal impeller to improve pump performance.


10.6036/10089 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 85-91
Author(s):  
Sathiyaraj Kasinathan ◽  
RAJARAM AYYASAMY

The renewable energy resources are widely used in various real time applications, which utilized the solar, wind, fuel cell, etc. From this, the energy management and controlling strategy improves the results. The conventional approach uses Quantum Tunneling PSO for optimization and it is managed with various utility on power grid system. The work utilized the solar and EM waves for energy management scheme and it utilized the controlling parameter by optimization algorithm. The drawback of conventional method is that, the hybrid system utilization and switching is performed with random selection and it not capable for hybrid resources of multiple array functioning. The proposed research work performed with the solar with MPPT tracking and EM with rectenna are utilized and with the help of neural network model, the PV and RF signal generations are stored as array and based on the switching duty cycle from the function of proposed particle swarm optimization, the boost converter act to provide the supply to grid. Through the inverter control, the model fed with the grid, which uses PI controlling with PWM signal generation. Based on the demand and grid utility the LC compensation improves the boost converter performance. The PV and RF signal generation utilized on the continuous utility and obtains the demand free grid circuit. By comparing with the proposed and existing approach, the proposed greenhouse management model obtains the better result. Overall simulink model is done with MATLAB 2018a. Keywords- PV module; EM waves; Rectenna; Proposed PSO; Feed Forward neural network; PI controller and grid utility;


Sign in / Sign up

Export Citation Format

Share Document