On strang’s fifth bound for eigenvalues of the jordan product of two self-adjoint operators on a finite dimensional unitary space

1989 ◽  
Vol 15 (1-2) ◽  
pp. 53-65
Author(s):  
A. Grubb ◽  
C. S. Sharma
Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


Author(s):  
K. V. Bhagwat ◽  
R. Subramanian

One of the most fruitful – and natural – ways of introducing a partial order in the set of bounded self-adjoint operators in a Hilbert space is through the concept of a positive operator. A bounded self-adjoint operator A denned on is called positive – and one writes A ≥ 0 - if the inner product (ψ, Aψ) ≥ 0 for every ψ ∈ . If, in addition, (ψ, Aψ) = 0 only if ψ = 0, then A is called positive-definite and one writes A > 0. Further, if there exists a real number γ > 0 such that A — γI ≥ 0, I being the unit operator, then A is called strictly positive (in symbols, A ≫ 0). In a finite dimensional space, a positive-definite operator is also strictly positive.


2008 ◽  
Vol 58 (4) ◽  
Author(s):  
Hans Keller ◽  
Ochsenius Herminia

AbstractTheorems on orthogonal decompositions are a cornerstone in the classical theory of real (or complex) matrices and operators on ℝn. In the paper we consider finite dimensional inner product spaces (E, ϕ) over a field K = F((χ 1, ..., x m)) of generalized power series in m variables and with coefficients in a real closed field F. It turns out that for most of these spaces (E, ϕ) every self-adjoint operator gives rise to an orthogonal decomposition of E into invariant subspaces, but there are some salient exceptions. Our main theorem states that every self-adjoint operator T: (E, ϕ) → (E, ϕ) is decomposable except when dim E is a power of 2 with exponent at most m, and ϕ is a tensor product of pairwise inequivalent binary forms. In the exceptional cases we provide an explicit description of indecomposable operators.


2005 ◽  
Vol 77 (4) ◽  
pp. 589-594 ◽  
Author(s):  
Paolo Piccione ◽  
Daniel V. Tausk

We prove that any countable family of Lagrangian subspaces of a symplectic Hilbert space admits a common complementary Lagrangian. The proof of this puzzling result, which is not totally elementary also in the finite dimensional case, is obtained as an application of the spectral theorem for unbounded self-adjoint operators.


1998 ◽  
Vol 1 ◽  
pp. 42-74 ◽  
Author(s):  
E.B. Davies

AbstractThis paper considers a number of related problems concerning the computation of eigenvalues and complex resonances of a general self-adjoint operator H. The feature which ties the different sections together is that one restricts oneself to spectral properties of H which can be proved by using only vectors from a pre-assigned (possibly finite-dimensional) linear subspace L.


1999 ◽  
Vol 34 (2) ◽  
pp. 127-164 ◽  
Author(s):  
Jonathan Arazy ◽  
Leonid Zelenko

2009 ◽  
Vol 20 (11) ◽  
pp. 1431-1454
Author(s):  
VICTOR J. MIZEL ◽  
M. M. RAO

In this paper bounded linear operators in Hilbert space satisfying general quadratic equations are characterized. Necessary and sufficient conditions for sets of operators satisfying two such equations to compare relative to a weak ordering are presented. In addition, averaging operators in finite dimensional spaces are determined, and in this case it is shown that they are unitary models for all projections. It is pointed out, by an example, that the latter result does not hold in infinite dimensions. A key application to certain second order random fields of Karhunen type is given. The main purpose is to present the structure of bounded non-self adjoint operators solving quadratic equations, and indicate their use.


Sign in / Sign up

Export Citation Format

Share Document