scholarly journals Spectral Enclosures and Complex Resonances for General Self-Adjoint Operators

1998 ◽  
Vol 1 ◽  
pp. 42-74 ◽  
Author(s):  
E.B. Davies

AbstractThis paper considers a number of related problems concerning the computation of eigenvalues and complex resonances of a general self-adjoint operator H. The feature which ties the different sections together is that one restricts oneself to spectral properties of H which can be proved by using only vectors from a pre-assigned (possibly finite-dimensional) linear subspace L.

Author(s):  
K. V. Bhagwat ◽  
R. Subramanian

One of the most fruitful – and natural – ways of introducing a partial order in the set of bounded self-adjoint operators in a Hilbert space is through the concept of a positive operator. A bounded self-adjoint operator A denned on is called positive – and one writes A ≥ 0 - if the inner product (ψ, Aψ) ≥ 0 for every ψ ∈ . If, in addition, (ψ, Aψ) = 0 only if ψ = 0, then A is called positive-definite and one writes A > 0. Further, if there exists a real number γ > 0 such that A — γI ≥ 0, I being the unit operator, then A is called strictly positive (in symbols, A ≫ 0). In a finite dimensional space, a positive-definite operator is also strictly positive.


2008 ◽  
Vol 58 (4) ◽  
Author(s):  
Hans Keller ◽  
Ochsenius Herminia

AbstractTheorems on orthogonal decompositions are a cornerstone in the classical theory of real (or complex) matrices and operators on ℝn. In the paper we consider finite dimensional inner product spaces (E, ϕ) over a field K = F((χ 1, ..., x m)) of generalized power series in m variables and with coefficients in a real closed field F. It turns out that for most of these spaces (E, ϕ) every self-adjoint operator gives rise to an orthogonal decomposition of E into invariant subspaces, but there are some salient exceptions. Our main theorem states that every self-adjoint operator T: (E, ϕ) → (E, ϕ) is decomposable except when dim E is a power of 2 with exponent at most m, and ϕ is a tensor product of pairwise inequivalent binary forms. In the exceptional cases we provide an explicit description of indecomposable operators.


1979 ◽  
Vol 22 (3) ◽  
pp. 263-269 ◽  
Author(s):  
P. A. Fillmore ◽  
C. K. Fong ◽  
A. R. Sourour

The purpose of this paper is to answer the question: which self-adjoint operators on a separable Hilbert space are the real parts of quasi-nilpotent operators? In the finite-dimensional case the answer is: self-adjoint operators with trace zero. In the infinite dimensional case, we show that a self-adjoint operator is the real part of a quasi-nilpotent operator if and only if the convex hull of its essential spectrum contains zero. We begin by considering the finite dimensional case.


Author(s):  
Paul Binding ◽  
Patrick J. Browne

SynopsisWe consider eigenvalues λ =(λ1, λ2) ∈R2 for the problem W(λ)x = 0, x ≠ 0, x ∈ H, where W(λ) = R + λ1V1 + λ2V2), and R, V1, V2 are self-adjoint operators on a separable Hilbert space H, R being bounded below with compact resolvent and V1, V2 being bounded. The i-th eigencurve Z1 is the set of eigenvalues λ, for which the i-th eigenvalue (counted according to multiplicity and in increasing order) of W(λ) vanishes. We study monotonic and asymptotic properties of Zi, and we give formulae for any asymptotes that exist. Additional results are given in the finite dimensional case.


Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


1996 ◽  
Vol 28 (2) ◽  
pp. 335-335
Author(s):  
Markus Kiderlen

For a stationary point process X of convex particles in ℝd the projected thick section process X(L) on a q-dimensional linear subspace L is considered. Formulae connecting geometric functionals, e.g. the quermass densities of X and X(L), are presented. They generalize the classical results of Miles (1976) and Davy (1976) which hold only in the isotropic case.


2015 ◽  
Vol 15 (3) ◽  
pp. 373-389
Author(s):  
Oleg Matysik ◽  
Petr Zabreiko

AbstractThe paper deals with iterative methods for solving linear operator equations ${x = Bx + f}$ and ${Ax = f}$ with self-adjoint operators in Hilbert space X in the critical case when ${\rho (B) = 1}$ and ${0 \in \operatorname{Sp} A}$. The results obtained are based on a theorem by M. A. Krasnosel'skii on the convergence of the successive approximations, their modifications and refinements.


2014 ◽  
Vol 62 (2) ◽  
pp. 263-269 ◽  
Author(s):  
W. Mitkowski

Abstract Spectral properties of ladder and spatial electrical networks are considered. Dynamic properties of the networks are characterised by eigenvalues of the Jacobi cyclic state matrix. The effective formulas for eigenvalues of appropriate uniform systems are given. Numerical calculations were made using MATLAB.


1986 ◽  
Vol 29 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Lucas Jódar

The resolution problem of the systemwhere U(t), A, B, D and Uo are bounded linear operators on H and B* denotes the adjoint operator of B, arises in control theory, [9], transport theory, [12], and filtering problems, [3]. The finite-dimensional case has been introduced in [6,7], and several authors have studied the infinite-dimensional case, [4], [13], [18]. A recent paper, [17],studies the finite dimensional boundary problemwhere t ∈[0,b].In this paper we consider the more general boundary problemwhere all operators which appear in (1.2) are bounded linear operators on a separable Hilbert space H. Note that we do not suppose C = −B* and the boundary condition in (1.2) is more general than the boundary condition in (1.1).


Author(s):  
B. J. Harris

SynopsisWe provide estimates of the formfor the length of gap centre μ in the essential spectrum of a self-adjoint operator generated by a matrix differential expression.


Sign in / Sign up

Export Citation Format

Share Document