The Cauchy Problem for Semilinear Hyperbolic Systems with Generalized Functions as Initial Conditions

1988 ◽  
Vol 14 (3-4) ◽  
pp. 231-241 ◽  
Author(s):  
H. A. Biagioni
2021 ◽  
Vol 5 (3) ◽  
pp. 66
Author(s):  
Azmat Ullah Khan Niazi ◽  
Jiawei He ◽  
Ramsha Shafqat ◽  
Bilal Ahmed

This paper concerns with the existence and uniqueness of the Cauchy problem for a system of fuzzy fractional differential equation with Caputo derivative of order q∈(1,2], 0cD0+qu(t)=λu(t)⊕f(t,u(t))⊕B(t)C(t),t∈[0,T] with initial conditions u(0)=u0,u′(0)=u1. Moreover, by using direct analytic methods, the Eq–Ulam-type results are also presented. In addition, several examples are given which show the applicability of fuzzy fractional differential equations.


Author(s):  
Lee Da-tsin(Li Ta-tsien) ◽  
Shi Jia-hong

SynopsisIn this paper, the existence of global smooth solutions and the formation of singularities of solutions for strictly hyperbolic systems with general eigenvalues are discussed for the Cauchy problem with essentially periodic small initial data or nonperiodic initial data. A result of Klainerman and Majda is thus extended to the general case.


2020 ◽  
Vol 8 (2) ◽  
pp. 24-39
Author(s):  
V. Gorodetskiy ◽  
R. Kolisnyk ◽  
O. Martynyuk

Spaces of $S$ type, introduced by I.Gelfand and G.Shilov, as well as spaces of type $S'$, topologically conjugate with them, are natural sets of the initial data of the Cauchy problem for broad classes of equations with partial derivatives of finite and infinite orders, in which the solutions are integer functions over spatial variables. Functions from spaces of $S$ type on the real axis together with all their derivatives at $|x|\to \infty$ decrease faster than $\exp\{-a|x|^{1/\alpha}\}$, $\alpha > 0$, $a > 0$, $x\in \mathbb{R}$. The paper investigates a nonlocal multipoint by time problem for equations with partial derivatives of parabolic type in the case when the initial condition is given in a certain space of generalized functions of the ultradistribution type ($S'$ type). Moreover, results close to the Cauchy problem known in theory for such equations with an initial condition in the corresponding spaces of generalized functions of $S'$ type were obtained. The properties of the fundamental solution of a nonlocal multipoint by time problem are investigated, the correct solvability of the problem is proved, the image of the solution in the form of a convolution of the fundamental solution with the initial generalized function, which is an element of the space of generalized functions of $S'$ type.


Author(s):  
Marina V. Dontsova

The Cauchy problem for a system of two first-order quasilinear equations with absolute terms is considered. The study of this problem’s solvability in original coordinates is based on the method of an additional argument. The existence of the local solution of the problem with smoothness which is not lower than the smoothness of the initial conditions, is proved. Sufficient conditions of existence are determined for the nonlocal solution that is continued by a finite number of steps from the local solution. The proof of the nonlocal resolvability of the Cauchy problem relies on original global estimates.


Sign in / Sign up

Export Citation Format

Share Document