On novikov's conjecture for cocompact discrete subgroups of a lie group

Author(s):  
F. T. Farrell ◽  
W. C. Hsiang
Keyword(s):  
1951 ◽  
Vol 2 ◽  
pp. 95-110 ◽  
Author(s):  
Yozô Matsushima

Recently A, Malcev has shown that the homogeneous space of a connected nilpotent Lie group G is the direct product of a compact space and an Euclidean-space and that the compact space of this direct decomposition is also a homogeneous space of a connected subgroup of G. Any compact homogeneous space M of a connected nilpotent Lie group is of the form where is a connected simply connected nilpotent group whose structure constants are rational numbers in a suitable coordinate system and D is a discrete subgroup of G.


1949 ◽  
Vol 1 (2) ◽  
pp. 36-37 ◽  
Author(s):  
Hiraku Toyama
Keyword(s):  

2007 ◽  
Vol 18 (03) ◽  
pp. 245-254
Author(s):  
TARO YOSHINO

The Cartan motion group associated to a Riemannian symmetric space X is a semidirect product group acting isometrically on its tangent space. For two subsets in a locally compact group G, Kobayashi introduced the concept of "properness" as a generalization of properly discontinuous actions of discrete subgroups on homogeneous spaces of G. In this paper, we give a criterion of properness for homogeneous spaces of Cartan motion groups. Our criterion has a similar feature to the case where G is a reductive Lie group.


2012 ◽  
Vol 9 (1) ◽  
pp. 59-64
Author(s):  
R.K. Gazizov ◽  
A.A. Kasatkin ◽  
S.Yu. Lukashchuk

In the paper some features of applying Lie group analysis methods to fractional differential equations are considered. The problem related to point change of variables in the fractional differentiation operator is discussed and some general form of transformation that conserves the form of Riemann-Liouville fractional operator is obtained. The prolongation formula for extending an infinitesimal operator of a group to fractional derivative with respect to arbitrary function is presented. Provided simple example illustrates the necessity of considering both local and non-local symmetries for fractional differential equations in particular cases including the initial conditions. The equivalence transformation forms for some fractional differential equations are discussed and results of group classification of the wave-diffusion equation are presented. Some examples of constructing particular exact solutions of fractional transport equation are given, based on the Lie group methods and the method of invariant subspaces.


Author(s):  
Ercüment H. Ortaçgil
Keyword(s):  

The discussions up to Chapter 4 have been concerned with the Lie group. In this chapter, the Lie algebra is constructed by defining the operators ∇ and ∇̃.


Author(s):  
Ercüment H. Ortaçgil

The pseudogroup of local solutions in Chapter 3 defines another pseudogroup by taking its centralizer inside the diffeomorphism group Diff(M) of a manifold M. These two pseudogroups define a Lie group structure on M.


Sign in / Sign up

Export Citation Format

Share Document