Cyclic homology and quillen homology of a commutative algebra

Author(s):  
Micheline Vigué-Poirrier
2018 ◽  
Vol 17 (05) ◽  
pp. 1850091
Author(s):  
Jorge A. Guccione ◽  
Juan J. Guccione ◽  
Christian Valqui

Let [Formula: see text] be a commutative algebra with [Formula: see text] and let [Formula: see text] be a cleft extension of [Formula: see text]. We obtain a new mixed complex, simpler than the canonical one, giving the Hochschild and cyclic homologies of [Formula: see text] relative to [Formula: see text]. This complex resembles the canonical reduced mixed complex of an augmented algebra. We begin the study of our complex showing that it has a harmonic decomposition like the one considered by Cuntz and Quillen for the normalized mixed complex of an algebra.


Author(s):  
Tom Bachmann ◽  
Kirsten Wickelgren

Abstract We equate various Euler classes of algebraic vector bundles, including those of [12] and one suggested by M. J. Hopkins, A. Raksit, and J.-P. Serre. We establish integrality results for this Euler class and give formulas for local indices at isolated zeros, both in terms of the six-functors formalism of coherent sheaves and as an explicit recipe in the commutative algebra of Scheja and Storch. As an application, we compute the Euler classes enriched in bilinear forms associated to arithmetic counts of d-planes on complete intersections in $\mathbb P^n$ in terms of topological Euler numbers over $\mathbb {R}$ and $\mathbb {C}$ .


Author(s):  
Piotr M. Hajac ◽  
Tomasz Maszczyk

AbstractViewing the space of cotraces in the structural coalgebra of a principal coaction as a noncommutative counterpart of the classical Cartan model, we construct the cyclic-homology Chern–Weil homomorphism. To realize the thus constructed Chern–Weil homomorphism as a Cartan model of the homomorphism tautologically induced by the classifying map on cohomology, we replace the unital subalgebra of coaction-invariants by its natural H-unital nilpotent extension (row extension). Although the row-extension algebra provides a drastically different model of the cyclic object, we prove that, for any row extension of any unital algebra over a commutative ring, the row-extension Hochschild complex and the usual Hochschild complex are chain homotopy equivalent. It is the discovery of an explicit homotopy formula that allows us to improve the homological quasi-isomorphism arguments of Loday and Wodzicki. We work with families of principal coactions, and instantiate our noncommutative Chern–Weil theory by computing the cotrace space and analyzing a dimension-drop-like effect in the spirit of Feng and Tsygan for the quantum-deformation family of the standard quantum Hopf fibrations.


2007 ◽  
Vol 208 (2) ◽  
pp. 665-689 ◽  
Author(s):  
Francis Borceux ◽  
Marco Grandis
Keyword(s):  

1996 ◽  
Vol 05 (04) ◽  
pp. 441-461 ◽  
Author(s):  
STAVROS GAROUFALIDIS

Recently Ohtsuki [Oh2], motivated by the notion of finite type knot invariants, introduced the notion of finite type invariants for oriented, integral homology 3-spheres. In the present paper we propose another definition of finite type invariants of integral homology 3-spheres and give equivalent reformulations of our notion. We show that our invariants form a filtered commutative algebra. We compare the two induced filtrations on the vector space on the set of integral homology 3-spheres. As an observation, we discover a new set of restrictions that finite type invariants in the sense of Ohtsuki satisfy and give a set of axioms that characterize the Casson invariant. Finally, we pose a set of questions relating the finite type 3-manifold invariants with the (Vassiliev) knot invariants.


Sign in / Sign up

Export Citation Format

Share Document