The real elements in a consistency proof for simple type theory I

Author(s):  
Horst Luckhardt
1988 ◽  
Vol 53 (3) ◽  
pp. 840-845 ◽  
Author(s):  
Jan M. Smith

In Hilbert and Ackermann [2] there is a simple proof of the consistency of first order predicate logic by reducing it to propositional logic. Intuitively, the proof is based on interpreting predicate logic in a domain with only one element. Tarski [7] and Gentzen [1] have extended this method to simple type theory by starting with an individual domain consisting of a single element and then interpreting a higher type by the set of truth valued functions on the previous type.I will use the method of Hilbert and Ackermann on Martin-Löf's type theory without universes to show that ¬Eq(A, a, b) cannot be derived without universes for any type A and any objects a and b of type A. In particular, this proves the conjecture in Martin-Löf [5] that Peano's fourth axiom (∀x ϵ N)¬ Eq(N, 0, succ(x)) cannot be proved in type theory without universes. If by consistency we mean that there is no closed term of the empty type, then the construction will also give a consistency proof by finitary methods of Martin-Löf's type theory without universes. So, without universes, the logic obtained by interpreting propositions as types is surprisingly weak. This is in sharp contrast with type theory as a computational system, since, for instance, the proof that every object of a type can be computed to normal form cannot be formalized in first order arithmetic.


1973 ◽  
Vol 38 (2) ◽  
pp. 215-226
Author(s):  
Satoko Titani

In [4], I introduced a quasi-Boolean algebra, and showed that in a formal system of simple type theory, from which the cut rule is omitted, wffs form a quasi-Boolean algebra, and that the cut-elimination theorem can be formulated in algebraic language. In this paper we use the result of [4] to prove the cut-elimination theorem in simple type theory. The theorem was proved by M. Takahashi [2] in 1967 by using the concept of Schütte's semivaluation. We use maximal ideals of a quasi-Boolean algebra instead of semivaluations.The logical system we are concerned with is a modification of Schütte's formal system of simple type theory in [1] into Gentzen style.Inductive definition of types.0 and 1 are types.If τ1, …, τn are types, then (τ1, …, τn) is a type.Basic symbols.a1τ, a2τ, … for free variables of type τ.x1τ, x2τ, … for bound variables of type τ.An arbitrary number of constants of certain types.An arbitrary number of function symbols with certain argument places.


1998 ◽  
Vol 32 (1-3) ◽  
pp. 211-213
Author(s):  
Nissim Francez

1984 ◽  
Vol 49 (1) ◽  
pp. 204-219
Author(s):  
Christian Hort ◽  
Horst Osswald

There are two concepts of standard/nonstandard models in simple type theory.The first concept—we might call it the pragmatical one—interprets type theory as a first order logic with countably many sorts of variables: the variables for the urelements of type 0,…, the n-ary relational variables of type (τ1, …, τn) with arguments of type (τ1,…,τn), respectively. If A ≠ ∅ then 〈Aτ〉 is called a model of type logic, if A0 = A and . 〈Aτ〉 is called full if, for every τ = (τ1,…,τn), . The variables for the urelements range over the elements of A and the variables of type (τ1,…, τn) range over those subsets of which are elements of . The theory Th(〈Aτ〉) is the set of all closed formulas in the language which hold in 〈Aτ〉 under natural interpretation of the constants. If 〈Bτ〉 is a model of Th(〈Aτ〉), then there exists a sequence 〈fτ〉 of functions fτ: Aτ → Bτ such that 〈fτ〉 is an elementary embedding from 〈Aτ〉 into 〈Bτ〉. 〈Bτ〉 is called a nonstandard model of 〈Aτ〉, if f0 is not surjective. Otherwise 〈Bτ〉 is called a standard model of 〈Aτ〉.This first concept of model theory in type logic seems to be preferable for applications in model theory, for example in nonstandard analysis, since all nice properties of first order model theory (completeness, compactness, and so on) are preserved.


Sign in / Sign up

Export Citation Format

Share Document