Differential forms and hypersurface singularities

Author(s):  
Alexandru Dimca
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Cyril Closset ◽  
Simone Giacomelli ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of ‘trinion’ singularities which exhibit these properties. In Type IIB, they give rise to 4d $$ \mathcal{N} $$ N = 2 SCFTs that we call $$ {D}_p^b $$ D p b (G)-trinions, which are marginal gaugings of three SCFTs with G flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d $$ \mathcal{N} $$ N = 4 theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as ‘ugly’ components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver ‘bad’. We propose a way to redeem the badness of these quivers using a class $$ \mathcal{S} $$ S realization. We also discover new S-dualities between different $$ {D}_p^b $$ D p b (G)-trinions. For instance, a certain E8 gauging of the E8 Minahan-Nemeschansky theory is S-dual to an E8-shaped Lagrangian quiver SCFT.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Nikhil Kalyanapuram

Abstract We combine the technology of the theory of polytopes and twisted intersection theory to derive a large class of double copy relations that generalize the classical relations due to Kawai, Lewellen and Tye (KLT). To do this, we first study a generalization of the scattering equations of Cachazo, He and Yuan. While the scattering equations were defined on ℳ0, n — the moduli space of marked Riemann spheres — the new scattering equations are defined on polytopes known as accordiohedra, realized as hyperplane arrangements. These polytopes encode as patterns of intersection the scattering amplitudes of generic scalar theories. The twisted period relations of such intersection numbers provide a vast generalization of the KLT relations. Differential forms dual to the bounded chambers of the hyperplane arrangements furnish a natural generalization of the Bern-Carrasco-Johansson (BCJ) basis, the number of which can be determined by counting the number of solutions of the generalized scattering equations. In this work the focus is on a generalization of the BCJ expansion to generic scalar theories, although we use the labels KLT and BCJ interchangeably.


2006 ◽  
Vol 49 (11) ◽  
pp. 1576-1592 ◽  
Author(s):  
Kepao Lin ◽  
Zhenhan Tu ◽  
Stephen S. T. Yau

1986 ◽  
Vol 41 (2) ◽  
pp. 205-206
Author(s):  
M I Kuznetsov ◽  
S A Kirillov

Sign in / Sign up

Export Citation Format

Share Document