An extension of Miyata's Theorem on the transfer map from the classgroup of a finite dihedral group to that of its cyclic maximal subgroup

Author(s):  
S. M. J. Wilson
2021 ◽  
Vol 1722 ◽  
pp. 012051
Author(s):  
A G Syarifudin ◽  
Nurhabibah ◽  
D P Malik ◽  
I G A W Wardhana
Keyword(s):  

2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Ying Liu ◽  
Jia-bin Yuan ◽  
Wen-jing Dai ◽  
Dan Li

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiakuan Lu ◽  
Kaisun Wu ◽  
Wei Meng

AbstractLet 𝐺 be a finite group. An irreducible character of 𝐺 is called a 𝒫-character if it is an irreducible constituent of (1_{H})^{G} for some maximal subgroup 𝐻 of 𝐺. In this paper, we obtain some conditions for a solvable group 𝐺 to be 𝑝-nilpotent or 𝑝-closed in terms of 𝒫-characters.


2005 ◽  
Vol 16 (09) ◽  
pp. 941-955 ◽  
Author(s):  
ALI BAKLOUTI ◽  
FATMA KHLIF

Let G be a connected, simply connected nilpotent Lie group, H and K be connected subgroups of G. We show in this paper that the action of K on X = G/H is proper if and only if the triple (G,H,K) has the compact intersection property in both cases where G is at most three-step and where G is special, extending then earlier cases. The result is also proved for exponential homogeneous space on which acts a maximal subgroup.


2010 ◽  
Vol 17 (03) ◽  
pp. 389-414 ◽  
Author(s):  
Faryad Ali ◽  
Jamshid Moori

The Fischer group [Formula: see text] is the largest 3-transposition sporadic group of order 2510411418381323442585600 = 222.316.52.73.11.13.17.23.29. It is generated by a conjugacy class of 306936 transpositions. Wilson [15] completely determined all the maximal 3-local subgroups of Fi24. In the present paper, we determine the Fischer-Clifford matrices and hence compute the character table of the non-split extension 37· (O7(3):2), which is a maximal 3-local subgroup of the automorphism group Fi24 of index 125168046080 using the technique of Fischer-Clifford matrices. Most of the calculations are carried out using the computer algebra systems GAP and MAGMA.


1990 ◽  
Vol 13 (2) ◽  
pp. 311-314
Author(s):  
S. Srinivasan

In finite groups maximal subgroups play a very important role. Results in the literature show that if the maximal subgroup has a very small index in the whole group then it influences the structure of the group itself. In this paper we study the case when the index of the maximal subgroups of the groups have a special type of relation with the Fitting subgroup of the group.


1973 ◽  
Vol 15 (4) ◽  
pp. 428-429 ◽  
Author(s):  
G. J. Hauptfleisch

If A, B, H, K are abelian group and φ: A → H and ψ: B → K are epimorphisms, then a given central group extension G of H by K is not necessarily a homomorphic image of a group extension of A by B. Take for instance A = Z(2), B = Z ⊕ Z, H = Z(2), K = V4 (Klein's fourgroup). Then the dihedral group D8 is a central extension of H by K but it is not a homomorphic image of Z ⊕ Z ⊕ Z(2), the only group extension of A by the free group B.


2002 ◽  
Vol 73 (3) ◽  
pp. 377-392 ◽  
Author(s):  
R. Quackenbush ◽  
C. S. Szabó

AbstractDavey and Quackenbush proved a strong duality for each dihedral group Dm with m odd. In this paper we extend this to a strong duality for each finite group with cyclic Sylow subgroups (such groups are known to be metacyclic).


Sign in / Sign up

Export Citation Format

Share Document