SL method for computing a near-optimal solution using linear and non-linear programming in cost-based hypothetical reasoning

Author(s):  
Mitsuru Ishizuka ◽  
Yutaka Matsuo
2018 ◽  
Vol 7 (2.6) ◽  
pp. 283 ◽  
Author(s):  
Pranda Prasanta Gupta ◽  
Prerna Jain ◽  
Suman Sharma ◽  
Rohit Bhakar

In deregulated power markets, Independent System Operators (ISOs) maintains adequate reserve requirement in order to respond to generation and system security constraints. In order to estimate accurate reserve requirement and handling non-linearity and non-convexity of the problem, an efficient computational framework is required. In addition, ISO executes SCUC in order to reach the consistent operation. In this paper, a novel type of application which is Benders decomposition (BD) and Mixed integer non linear programming (MINLP) can be used to assess network security constraints by using AC optimal power flow (ACOPF) in a power system. It performs ACOPF in network security check evaluation with line outage contingency. The process of solving modified system would be close to optimal solution, the gap between the close to optimal and optimal solution is expected to determine whether a close to optimal solutionis accepetable for convenientpurpose. This approach drastically betters the fast computational requirement in practical power system .The numerical case studies are investigated in detail using an IEEE 118-bus system. 


2015 ◽  
Vol 25 (3) ◽  
pp. 457-470 ◽  
Author(s):  
Monalisha Pattnaik

In this paper, the concept of fuzzy Non-Linear Programming Technique is applied to solve an economic order quantity (EOQ) model for restricted budget and space. Since various types of uncertainties and imprecision are inherent in real inventory problems, they are classically modeled using the approaches from the probability theory. However, there are uncertainties that cannot be appropriately treated by the usual probabilistic models. The questions are how to define inventory optimization tasks in such environment and how to interpret the optimal solutions. This paper allow the modification of the Single item EOQ model in presence of fuzzy decision making process where demand is related to the unit price, and the setup cost varies with the quantity produced/Purchased. The modification of objective function, budget, and storage area in the presence of imprecisely estimated parameters are considered. The model is developed by employing different approaches over an infinite planning horizon. It incorporates all the concepts of a fuzzy arithmetic approach and comparative analysis with other non linear models. Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated by an example problem, and two and three dimensional diagrams are represented to this application through MATL(R2009a) software. Sensitivity analysis of the optimal solution is studied with respect to the changes of different parameter values for obtaining managerial insights of the decision problem.


Sign in / Sign up

Export Citation Format

Share Document