scholarly journals Geometrizing non-relativistic bilinear deformations

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Dennis Hansen ◽  
Yunfeng Jiang ◽  
Jiuci Xu

Abstract We define three fundamental solvable bilinear deformations for any massive non-relativistic 2d quantum field theory (QFT). They include the $$ \mathrm{T}\overline{\mathrm{T}} $$ T T ¯ deformation and the recently introduced hard rod deformation. We show that all three deformations can be interpreted as coupling the non-relativistic QFT to a specific Newton-Cartan geometry, similar to the Jackiw-Teitelboim-like gravity in the relativistic case. Using the gravity formulations, we derive closed-form deformed classical Lagrangians of the Schrödinger model with a generic potential. We also extend the dynamical change of coordinate interpretation to the non-relativistic case for all three deformations. The dynamical coordinates are then used to derive the deformed classical Lagrangians and deformed quantum S-matrices.

2005 ◽  
Vol 20 (08) ◽  
pp. 623-628 ◽  
Author(s):  
E. B. MANOUKIAN ◽  
N. YONGRAM

Polarization correlations of e+e- pair productions from charged and neutral Nambu strings are investigated, via photon and graviton emissions, respectively and explicit expressions for their corresponding probabilities are derived and found to be speed dependent. The strings are taken to be circularly oscillating closed strings, as perhaps the simplest solution of the Nambu action. In the extreme relativistic case, these probabilities coincide, but, in general, are different, and such inquiries, in principle, indicate whether the string is charged or uncharged. It is remarkable that these dynamical relativistic quantum field theory calculations lead to a clear violation of Local Hidden Variables theories.


2014 ◽  
Vol 6 (2) ◽  
pp. 1079-1105
Author(s):  
Rahul Nigam

In this review we study the elementary structure of Conformal Field Theory in which is a recipe for further studies of critical behavior of various systems in statistical mechanics and quantum field theory. We briefly review CFT in dimensions which plays a prominent role for example in the well-known duality AdS/CFT in string theory where the CFT lives on the AdS boundary. We also describe the mapping of the theory from the cylinder to a complex plane which will help us gain an insight into the process of radial quantization and radial ordering. Finally we will develop the representation of the Virasoro algebra which is the well-known "Verma module".  


2002 ◽  
Author(s):  
Marco Aurelio Do Rego Monteiro ◽  
V. B. Bezerra ◽  
E. M.F. Curado

Author(s):  
Michael Kachelriess

After a brief review of the operator approach to quantum mechanics, Feynmans path integral, which expresses a transition amplitude as a sum over all paths, is derived. Adding a linear coupling to an external source J and a damping term to the Lagrangian, the ground-state persistence amplitude is obtained. This quantity serves as the generating functional Z[J] for n-point Green functions which are the main target when studying quantum field theory. Then the harmonic oscillator as an example for a one-dimensional quantum field theory is discussed and the reason why a relativistic quantum theory should be based on quantum fields is explained.


Author(s):  
Sauro Succi

Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.


Sign in / Sign up

Export Citation Format

Share Document