scholarly journals Heterotic models from vector bundles on toric Calabi-Yau manifolds

2010 ◽  
Vol 2010 (5) ◽  
Author(s):  
Yang-Hui He ◽  
Seung-Joo Lee ◽  
André Lukas
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Wei Cui ◽  
Mohsen Karkheiran

Abstract Holomorphicity of vector bundles can stabilize complex structure moduli of a Calabi-Yau threefold in N = 1 supersymmetric heterotic compactifications. In principle, the Atiyah class determines the stabilized moduli. In this paper, we study how this mechanism works in the context of elliptically fibered Calabi-Yau manifolds where the complex structure moduli space contains two kinds of moduli, those from the base and those from the fibration. Defining the bundle with spectral data, we find three types of situations when bundles’ holomorphicity depends on algebraic cycles exist only for special loci in the complex structure moduli, which allows us to stabilize both of these two moduli. We present concrete examples for each type and develop practical tools to analyze the stabilized moduli. Finally, by checking the holomorphicity of the four-flux and/or local Higgs bundle data in F-theory, we briefly study the dual complex structure moduli stabilization scenarios.


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
T. V. Obikhod

The duality between E8xE8 heteritic string on manifold K3xT2 and Type IIA string compactified on a Calabi-Yau manifold induces a correspondence between vector bundles on K3xT2 and Calabi-Yau manifolds. Vector bundles over compact base space K3xT2 form the set of isomorphism classes, which is a semi-ring under the operation of Whitney sum and tensor product. The construction of semi-ring V ect X of isomorphism classes of complex vector bundles over X leads to the ring KX = K(V ect X), called Grothendieck group. As K3 has no isometries and no non-trivial one-cycles, so vector bundle winding modes arise from the T2 compactification. Since we have focused on supergravity in d = 11, there exist solutions in d = 10 for which space-time is Minkowski space and extra dimensions are K3xT2. The complete set of soliton solutions of supergravity theory is characterized by RR charges, identified by K-theory. Toric presentation of Calabi-Yau through Batyrev's toric approximation enables us to connect transitions between Calabi-Yau manifolds, classified by enhanced symmetry group, with K-theory classification.


2011 ◽  
Vol 57 (2) ◽  
pp. 409-416
Author(s):  
Mihai Anastasiei

Banach Lie AlgebroidsFirst, we extend the notion of second order differential equations (SODE) on a smooth manifold to anchored Banach vector bundles. Then we define the Banach Lie algebroids as Lie algebroids structures modeled on anchored Banach vector bundles and prove that they form a category.


Author(s):  
Lorenzo De Biase ◽  
Enrico Fatighenti ◽  
Fabio Tanturri

AbstractWe rework the Mori–Mukai classification of Fano 3-folds, by describing each of the 105 families via biregular models as zero loci of general global sections of homogeneous vector bundles over products of Grassmannians.


Author(s):  
Tom Bachmann ◽  
Kirsten Wickelgren

Abstract We equate various Euler classes of algebraic vector bundles, including those of [12] and one suggested by M. J. Hopkins, A. Raksit, and J.-P. Serre. We establish integrality results for this Euler class and give formulas for local indices at isolated zeros, both in terms of the six-functors formalism of coherent sheaves and as an explicit recipe in the commutative algebra of Scheja and Storch. As an application, we compute the Euler classes enriched in bilinear forms associated to arithmetic counts of d-planes on complete intersections in $\mathbb P^n$ in terms of topological Euler numbers over $\mathbb {R}$ and $\mathbb {C}$ .


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Soheyla Feyzbakhsh ◽  
Chunyi Li

AbstractLet (X, H) be a polarized K3 surface with $$\mathrm {Pic}(X) = \mathbb {Z}H$$ Pic ( X ) = Z H , and let $$C\in |H|$$ C ∈ | H | be a smooth curve of genus g. We give an upper bound on the dimension of global sections of a semistable vector bundle on C. This allows us to compute the higher rank Clifford indices of C with high genus. In particular, when $$g\ge r^2\ge 4$$ g ≥ r 2 ≥ 4 , the rank r Clifford index of C can be computed by the restriction of Lazarsfeld–Mukai bundles on X corresponding to line bundles on the curve C. This is a generalization of the result by Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles. We also apply the same method to the projective plane and show that the rank r Clifford index of a degree $$d(\ge 5)$$ d ( ≥ 5 ) smooth plane curve is $$d-4$$ d - 4 , which is the same as the Clifford index of the curve.


2020 ◽  
pp. 1-23
Author(s):  
MICHELE BOLOGNESI ◽  
NÉSTOR FERNÁNDEZ VARGAS

Abstract Let C be a hyperelliptic curve of genus $g \geq 3$ . In this paper, we give a new geometric description of the theta map for moduli spaces of rank 2 semistable vector bundles on C with trivial determinant. In order to do this, we describe a fibration of (a birational model of) the moduli space, whose fibers are GIT quotients $(\mathbb {P}^1)^{2g}//\text {PGL(2)}$ . Then, we identify the restriction of the theta map to these GIT quotients with some explicit degree 2 osculating projection. As a corollary of this construction, we obtain a birational inclusion of a fibration in Kummer $(g-1)$ -varieties over $\mathbb {P}^g$ inside the ramification locus of the theta map.


Sign in / Sign up

Export Citation Format

Share Document