supergravity theory
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
David R. Morrison ◽  
Washington Taylor

Abstract We prove that, for every 6D supergravity theory that has an F-theory description, the property of charge completeness for the connected component of the gauge group (meaning that all charges in the corresponding charge lattice are realized by massive or massless states in the theory) is equivalent to a standard assumption made in F-theory for how geometry encodes the global gauge theory by means of the Mordell-Weil group of the elliptic fibration. This result also holds in 4D F-theory constructions for the parts of the gauge group that come from sections and from 7-branes. We find that in many 6D F-theory models the full charge lattice of the theory is generated by massless charged states; this occurs for each gauge factor where the associated anomaly coefficient satisfies a simple positivity condition. We describe many of the cases where this massless charge sufficiency condition holds, as well as exceptions where the positivity condition fails, and analyze the related global structure of the gauge group and associated Mordell-Weil torsion in explicit F-theory models.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Andreas P. Braun ◽  
Magdalena Larfors ◽  
Paul-Konstantin Oehlmann

Abstract We study six dimensional supergravity theories with superconformal sectors (SCFTs). Instances of such theories can be engineered using type IIB strings, or more generally F-Theory, which translates field theoretic constraints to geometry. Specifically, we study the fate of the discrete 2-form global symmetries of the SCFT sectors. For both (2, 0) and (1, 0) theories we show that whenever the charge lattice of the SCFT sectors is non-primitively embedded into the charge lattice of the supergravity theory, there is a subgroup of these 2-form symmetries that remains unbroken by BPS strings. By the absence of global symmetries in quantum gravity, this subgroup much be gauged. Using the embedding of the charge lattices also allows us to determine how the gauged 2-form symmetry embeds into the 2-form global symmetries of the SCFT sectors, and we present several concrete examples, as well as some general observations. As an alternative derivation, we recover our results for a large class of models from a dual perspective upon reduction to five dimensions.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Di Wu ◽  
Shuang-Qing Wu

Abstract By taking the ultra-spinning limit as a simple solution-generating trick, a novel class of ultra-spinning charged black hole solutions has been constructed from Chow’s rotating charged black hole with two equal-charge parameters in six-dimensional $$ \mathcal{N} $$ N = 4 gauged supergravity theory. We investigate their thermodynamical properties and then demonstrate that all thermodynamical quantities completely obey both the differential first law and the Bekenstein-Smarr mass formula. For the six-dimensional ultra-spinning Chow’s black hole with only one rotation parameter, we show that it does not always obey the reverse isoperimetric inequality, thus it can be either sub-entropic or super-entropic, depending upon the ranges of the mass parameter and especially the charge parameter. This property is obviously different from that of the six-dimensional singly-rotating Kerr-AdS super-entropic black hole, which always strictly violates the RII. For the six-dimensional doubly-rotating Chow’s black hole but ultra-spinning only along one spatial axis, we point out that it may also obey or violate the RII, and can be either super-entropic or sub-entropic in general.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Ricardo Caroca ◽  
Patrick Concha ◽  
Diego Peñafiel ◽  
Evelyn Rodríguez

AbstractIn this work we present a gauge-invariant three-dimensional teleparallel supergravity theory using the Chern-Simons formalism. The present construction is based on a supersymmetric extension of a particular deformation of the Poincaré algebra. At the bosonic level the theory describes a non-Riemannian geometry with a non-vanishing torsion. In presence of supersymmetry, the teleparallel supergravity theory is characterized by a non-vanishing super-torsion in which the cosmological constant can be seen as a source for the torsion. We show that the teleparallel supergravity theory presented here reproduces the Poincaré supergravity in the vanishing cosmological limit. The extension of our results to $${\mathcal {N}}=p+q$$ N = p + q supersymmetries is also explored.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Nikolay Bobev ◽  
Anthony M. Charles ◽  
Kiril Hristov ◽  
Valentin Reys

Abstract We use conformal supergravity techniques to study four-derivative corrections in four-dimensional gauged supergravity. We show that the four-derivative Lagrangian for the propagating degrees of freedom of the $$ \mathcal{N} $$ N = 2 gravity multiplet is determined by two real dimensionless constants. We demonstrate that all solutions of the two-derivative equations of motion in the supergravity theory also solve the four-derivative equations of motion. These results are then applied to explicitly calculate the regularized on-shell action for any asymptotically locally AdS4 solution of the two-derivative equations of motion. The four-derivative terms in the supergravity Lagrangian modify the entropy and other thermodynamic observables for the black hole solutions of the theory. We calculate these corrections explicitly and demonstrate that the quantum statistical relation holds for general stationary black holes in the presence of the four-derivative corrections. Employing an embedding of this supergravity model in M-theory we show how to use supersymmetric localization results in the holographically dual three-dimensional SCFT to determine the unknown coefficients in the four-derivative supergravity action. This in turn leads to new detailed results for the first subleading $$ {N}^{\frac{1}{2}} $$ N 1 2 correction to the large N partition function of a class of three-dimensional SCFTs on compact Euclidean manifolds. In addition, we calculate explicitly the first subleading correction to the Bekenstein-Hawking entropy of asymptotically AdS4 black holes in M-theory. We also discuss how to add matter multiplets to the supergravity theory in the presence of four-derivative terms and to generalize some of these results to six- and higher-derivative supergravity.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Alberto Castellano ◽  
Anamaría Font ◽  
Alvaro Herráez ◽  
Luis E. Ibáñez

Abstract We conjecture that in a consistent supergravity theory with non-vanishing gravitino mass, the limit m3/2 → 0 is at infinite distance. In particular one can write Mtower ~ $$ {m}_{3/2}^{\delta } $$ m 3 / 2 δ so that as the gravitino mass goes to zero, a tower of KK states as well as emergent strings becomes tensionless. This conjecture may be motivated from the Weak Gravity Conjecture as applied to strings and membranes and implies in turn the AdS Distance Conjecture. We test this proposal in classical 4d type IIA orientifold vacua in which one obtains a range of values $$ \frac{1}{3} $$ 1 3 ≤ δ ≤ 1. The parameter δ is related to the scale decoupling exponent in AdS vacua and to the α exponent in the Swampland Distance Conjecture for the type IIA complex structure. We present a general analysis of the gravitino mass in the limits of moduli space in terms of limiting Mixed Hodge Structures and study in some detail the case of two-moduli F-theory settings. Moreover, we obtain general lower bounds δ ≥$$ \frac{1}{3},\frac{1}{4} $$ 1 3 , 1 4 for Calabi-Yau threefolds and fourfolds, respectively. The conjecture has important phenomenological implications. In particular we argue that low-energy supersymmetry of order 1 TeV is only obtained if there is a tower of KK states at an intermediate scale, of order 108 GeV. One also has an upper bound for the Hubble constant upon inflation H ≲ $$ {m}_{3/2}^{\delta }{M}_{\mathrm{P}}^{\left(1-\delta \right)} $$ m 3 / 2 δ M P 1 − δ .


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Patrick Concha ◽  
Lucrezia Ravera ◽  
Evelyn Rodríguez

AbstractWe present a supersymmetric extension of the exotic Newtonian Chern–Simons gravity theory in three spacetime dimensions. The underlying new non-relativistic superalgebra is obtained by expanding the $${\mathcal {N}}=2$$ N = 2 AdS superalgebra and can be written as two copies of the enhanced Nappi–Witten algebra, one of which is augmented by supersymmetry. We show that the exotic Newtonian superalgebra allows to introduce a cosmological constant to the extended Newtonian supergravity. Interestingly, the obtained supergravity action contains the extended Newton–Hooke supergravity as a sub-case.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Murat Günaydin

Abstract The ultrashort unitary (4, 0) supermultiplet of 6d superconformal algebra OSp(8∗|8) reduces to the CPT-self conjugate supermultiplet of 4d superconformal algebra SU(2, 2|8) that represents the fields of maximal N = 8 supergravity. The graviton in the (4, 0) multiplet is described by a mixed tensor gauge field which can not be identified with the standard metric in 6d. Furthermore the (4, 0) supermultiplet can be obtained as a double copy of (2, 0) conformal supermultiplet whose interacting theories are non-Lagrangian. It had been suggested that an interacting non-metric (4, 0) supergravity theory might describe the strongly coupled phase of 5d maximal supergravity. In this paper we study the implications of the existence of an interacting non-metric (4, 0) supergravity in 6d. The (4, 0) theory can be truncated to non-metric (1, 0) supergravity coupled to 5,8 and 14 self-dual tensor multiplets that reduce to three of the unified magical supergravity theories in d = 5. This implies that the three infinite families of unified N = 2, 5d Maxwell-Einstein supergravity theories (MESGTs) plus two sporadic ones must have uplifts to unified non-metric (1, 0) tensor Einstein supergravity theories (TESGT) in d = 6. These theories have non-compact global symmetry groups under which all the self-dual tensor fields including the gravitensor transform irreducibly. Four of these theories are uplifts of the magical supergravity theories whose scalar manifolds are symmetric spaces. The scalar manifolds of the other unified theories are not homogeneous spaces. We also discuss the exceptional field theoretic formulations of non-metric unified (1, 0) tensor-Einstein supergravity theories and conclude with speculations concerning the existence of higher dimensional non-metric supergravity theories that reduce to the (4, 0) theory in d = 6.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Sudip Karan ◽  
Binata Panda

Abstract We calculate the first three Seeley-DeWitt coefficients for fluctuation of the massless fields of a $$ \mathcal{N} $$ N = 2 Einstein-Maxwell supergravity theory (EMSGT) distributed into different multiplets in d = 4 space-time dimensions. By utilizing the Seeley-DeWitt data in the quantum entropy function formalism, we then obtain the logarithmic correction contribution of individual multiplets to the entropy of extremal Kerr-Newman family of black holes. Our results allow us to find the logarithmic entropy corrections for the extremal black holes in a fully matter coupled $$ \mathcal{N} $$ N = 2, d = 4 EMSGT, in a particular class of $$ \mathcal{N} $$ N = 1, d = 4 EMSGT as consistent decomposition of $$ \mathcal{N} $$ N = 2 multiplets ($$ \mathcal{N} $$ N = 2 → $$ \mathcal{N} $$ N = 1) and in $$ \mathcal{N} $$ N ≥ 3, d = 4 EMSGTs by decomposing them into $$ \mathcal{N} $$ N = 2 multiplets ($$ \mathcal{N} $$ N ≥ 3 → $$ \mathcal{N} $$ N = 2). For completeness, we also obtain logarithmic entropy correction results for the non-extremal Kerr-Newman black holes in the matter coupled $$ \mathcal{N} $$ N ≥ 1, d = 4 EMSGTs by employing the same Seeley-DeWitt data into a different Euclidean gravity approach developed in [17].


Sign in / Sign up

Export Citation Format

Share Document