scholarly journals Dispersive CFT sum rules

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Simon Caron-Huot ◽  
Dalimil Mazáč ◽  
Leonardo Rastelli ◽  
David Simmons-Duffin

Abstract We give a unified treatment of dispersive sum rules for four-point correlators in conformal field theory. We call a sum rule “dispersive” if it has double zeros at all double-twist operators above a fixed twist gap. Dispersive sum rules have their conceptual origin in Lorentzian kinematics and absorptive physics (the notion of double discontinuity). They have been discussed using three seemingly different methods: analytic functionals dual to double-twist operators, dispersion relations in position space, and dispersion relations in Mellin space. We show that these three approaches can be mapped into one another and lead to completely equivalent sum rules. A central idea of our discussion is a fully nonperturbative expansion of the correlator as a sum over Polyakov-Regge blocks. Unlike the usual OPE sum, the Polyakov-Regge expansion utilizes the data of two separate channels, while having (term by term) good Regge behavior in the third channel. We construct sum rules which are non-negative above the double-twist gap; they have the physical interpretation of a subtracted version of “superconvergence” sum rules. We expect dispersive sum rules to be a very useful tool to study expansions around mean-field theory, and to constrain the low-energy description of holographic CFTs with a large gap. We give examples of the first kind of applications, notably we exhibit a candidate extremal functional for the spin-two gap problem.

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Zohar Komargodski ◽  
Márk Mezei ◽  
Sridip Pal ◽  
Avia Raviv-Moshe

Abstract Conformal Field Theories (CFTs) have rich dynamics in heavy states. We describe the constraints due to spontaneously broken boost and dilatation symmetries in such states. The spontaneously broken boost symmetries require the existence of new low-lying primaries whose scaling dimension gap, we argue, scales as O(1). We demonstrate these ideas in various states, including fluid, superfluid, mean field theory, and Fermi surface states. We end with some remarks about the large charge limit in 2d and discuss a theory of a single compact boson with an arbitrary conformal anomaly.


2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Dean Carmi ◽  
Joao Penedones ◽  
Joao A. Silva ◽  
Alexander Zhiboedov

We use Mellin space dispersion relations together with Polyakov conditions to derive a family of sum rules for Conformal Field Theories (CFTs). The defining property of these sum rules is suppression of the contribution of the double twist operators. Firstly, we apply these sum rules to the Wilson-Fisher model in d=4-\epsilond=4−ϵ dimensions. We re-derive many of the known results to order \epsilon^4ϵ4 and we make new predictions. No assumption of analyticity down to spin 00 was made. Secondly, we study holographic CFTs. We use dispersive sum rules to obtain tree-level and one-loop anomalous dimensions. Finally, we briefly discuss the contribution of heavy operators to the sum rules in UV complete holographic theories.


1993 ◽  
Vol 3 (3) ◽  
pp. 385-393 ◽  
Author(s):  
W. Helfrich

2000 ◽  
Vol 61 (17) ◽  
pp. 11521-11528 ◽  
Author(s):  
Sergio A. Cannas ◽  
A. C. N. de Magalhães ◽  
Francisco A. Tamarit

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Qinghong Yang ◽  
Zhesen Yang ◽  
Dong E. Liu

Sign in / Sign up

Export Citation Format

Share Document