position space
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 22)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Hare Krishna ◽  
D. Rodriguez-Gomez

Abstract We study 2-point correlation functions for scalar operators in position space through holography including bulk cubic couplings as well as higher curvature couplings to the square of the Weyl tensor. We focus on scalar operators with large conformal dimensions. This allows us to use the geodesic approximation for propagators. In addition to the leading order contribution, captured by geodesics anchored at the insertion points of the operators on the boundary and probing the bulk geometry thoroughly studied in the literature, the first correction is given by a Witten diagram involving both the bulk cubic coupling and the higher curvature couplings. As a result, this correction is proportional to the VEV of a neutral operator Ok and thus probes the interior of the black hole exactly as in the case studied by Grinberg and Maldacena [13]. The form of the correction matches the general expectations in CFT and allows to identify the contributions of TnOk (being Tn the general contraction of n energy-momentum tensors) to the 2-point function. This correction is actually the leading term for off-diagonal correlators (i.e. correlators for operators of different conformal dimension), which can then be computed holographically in this way.



2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Jeong Han Kim ◽  
Soubhik Kumar ◽  
Adam Martin ◽  
Yuhsin Tsai

Abstract Heavy particles with masses much bigger than the inflationary Hubble scale H*, can get non-adiabatically pair produced during inflation through their couplings to the inflaton. If such couplings give rise to time-dependent masses for the heavy particles, then following their production, the heavy particles modify the curvature perturbation around their locations in a time-dependent and scale non-invariant manner. This results into a non-trivial spatial profile of the curvature perturbation that is preserved on superhorizon scales and eventually generates localized hot or cold spots on the CMB. We explore this phenomenon by studying the inflationary production of heavy scalars and derive the final temperature profile of the spots on the CMB by taking into account the subhorizon evolution, focusing in particular on the parameter space where pairwise hot spots (PHS) arise. When the heavy scalar has an $$ \mathcal{O} $$ O (1) coupling to the inflaton, we show that for an idealized situation where the dominant background to the PHS signal comes from the standard CMB fluctuations themselves, a simple position space search based on applying a temperature cut, can be sensitive to heavy particle masses M0/H* ∼ $$ \mathcal{O} $$ O (100). The corresponding PHS signal also modifies the CMB power spectra and bispectra, although the corrections are below (outside) the sensitivity of current measurements (searches).



2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Vladimir M. Braun ◽  
Yao Ji ◽  
Alexey Vladimirov

Abstract We study chiral-odd quark-antiquark correlation functions suitable for lattice calculations of twist-three nucleon parton distribution functions hL(x) and e(x), and also the twist-two transversity distribution δq(x). The corresponding factorized expressions are derived in terms of the twist-two and twist-three collinear distributions to one-loop accuracy. The results are presented both in position space, as the factorization theorem for Ioffe-time distributions, and in momentum space, for quasi- and pseudo-distributions. We demonstrate that the twist-two part of the hL quasi(pseudo)-distribution can be separated from the twist-three part by virtue of an exact Jaffe-Ji-like relation.



2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kai Urban

Abstract We calculate the one-loop correction to the static potential induced by γ, W and Z-exchange at tree-level for arbitrary heavy standard model multiplets. We find that the result obeys a “Casimir-like” scaling, making the NLO correction to the potential a “low-energy” property of the electroweak gauge bosons. Furthermore, we discuss the phenomenology of the NLO potentials, the analytically known asymptotic limits and provide fitting functions in position space for easy use of the results.



2021 ◽  
Vol 66 (8) ◽  
pp. 684
Author(s):  
Hamid Al-Jibbouri

Within the KaKB, KaLa, and KBLa shells in the position space, the properties of a series of three-electron systems, for instance, B+2, C+3, and N+4 ions, have been studied. This required the partitioning of the two-particle space-spin density and was explicit for the Hartree–Fock description which have been proposed by considering a basis set based on single-zeta B-type orbitals (BTOs). The one- and two-body radial electronic densities R(r1), R(r1, r2), moments ⟨rn1⟩, X-ray form factor F(s), nucleus density R(0), nuclear magnetic shielding constant qd, and the diamagnetic susceptibility бs in the position space are reported. Our results are realized via the Mathematica program and compared with previous theoretical values in the literature.



2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Dean Carmi

Abstract We continue the study of AdS loop amplitudes in the spectral representation and in position space. We compute the finite coupling 4-point function in position space for the large-N conformal Gross Neveu model on AdS3. The resummation of loop bubble diagrams gives a result proportional to a tree-level contact diagram. We show that certain families of fermionic Witten diagrams can be easily computed from their companion scalar diagrams. Thus, many of the results and identities of [1] are extended to the case of external fermions. We derive a spectral representation for ladder diagrams in AdS. Finally, we compute various bulk 2-point correlators, extending the results of [1].



2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
N. G. Gracia ◽  
V. Mateu

Abstract We present results for SCET and bHQET matching coefficients and jet functions in the large-β0 limit. Our computations exactly predict all terms of the form $$ {\alpha}_s^{n+1}{n}_f^n $$ α s n + 1 n f n for any n ≥ 0, and we find full agreement with the coefficients computed in the full theory up to $$ \mathcal{O}\left({\alpha}_s^4\right) $$ O α s 4 . We obtain all-order closed expressions for the cusp and non-cusp anomalous dimensions (which turn out to be unambiguous) as well as matrix elements (with ambiguities) in this limit, which can be easily expanded to arbitrarily high powers of αs using recursive algorithms to obtain the corresponding fixed-order coefficients. Examining the poles laying on the positive real axis of the Borel-transform variable u we quantify the perturbative convergence of a series and estimate the size of non-perturbative corrections. We find a so far unknown u = 1/2 renormalon in the bHQET hard factor Hm that affects the normalization of the peak differential cross section for boosted top quark pair production. For ambiguous series the so-called Borel sum is defined with the principal value prescription. Furthermore, one can assign an ambiguity based on the arbitrariness of avoiding the poles by contour deformation into the positive or negative imaginary half-plane. Finally, we compute the relation between the pole mass and four low-scale short distance masses in the large-β0 approximation (MSR, RS and two versions of the jet mass), work out their μ- and R-evolution in this limit, and study how their implementation improves the convergence of the position-space bHQET jet function, whose three-loop coefficient in full QCD is numerically estimated.



2021 ◽  
Vol 10 (6) ◽  
Author(s):  
André Erpenbeck ◽  
Guy Cohen

The Kondo effect, a hallmark of strong correlation physics, is characterized by the formation of an extended cloud of singlet states around magnetic impurities at low temperatures. While many implications of the Kondo cloud's existence have been verified, the existence of the singlet cloud itself has not been directly demonstrated. We suggest a route for such a demonstration by considering an observable that has no classical analog, but is still experimentally measurable: ``singlet weights'', or projections onto particular entangled two-particle states. Using approximate theoretical arguments, we show that it is possible to construct highly specific energy- and position-resolved probes of Kondo correlations. Furthermore, we consider a quantum transport setup that can be driven away from equilibrium by a bias voltage. There, we show that singlet weights are enhanced by voltage even as the Kondo effect is weakened by it. This exposes a patently nonequilibrium mechanism for the generation of Kondo-like entanglement that is inherently different from its equilibrium counterpart.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shivani Singh ◽  
Prateek Chawla ◽  
Anupam Sarkar ◽  
C. M. Chandrashekar

AbstractQuantum walk has been regarded as a primitive to universal quantum computation. In this paper, we demonstrate the realization of the universal set of quantum gates on two- and three-qubit systems by using the operations required to describe the single particle discrete-time quantum walk on a position space. The idea is to utilize the effective Hilbert space of the single qubit and the position space on which it evolves in order to realize multi-qubit states and universal set of quantum gates on them. Realization of many non-trivial gates and engineering arbitrary states is simpler in the proposed quantum walk model when compared to the circuit based model of computation. We will also discuss the scalability of the model and some propositions for using lesser number of qubits in realizing larger qubit systems.



2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Vladimir M. Braun ◽  
Yao Ji ◽  
Alexey Vladimirov

Abstract The transverse component of the axial-vector correlation function of quark fields is a natural starting object for lattice calculations of twist-3 nucleon parton distribution functions. In this work we derive the corresponding factorization expression in terms of twist-2 and twist-3 collinear distributions to one-loop accuracy. The results are presented both in position space, as the factorization theorem for Ioffe-time distributions, and in momentum space, for the axial-vector quasi- and pseudodistributions.



Sign in / Sign up

Export Citation Format

Share Document