scholarly journals A note on large gauge transformations in double field theory

2015 ◽  
Vol 2015 (6) ◽  
Author(s):  
Usman Naseer
2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Chen-Te Ma ◽  
Franco Pezzella

Abstract In Double Field Theory, the mass-squared of doubled fields associated with bosonic closed string states is proportional to NL + NR− 2. Massless states are therefore not only the graviton, anti-symmetric, and dilaton fields with (NL = 1, NR = 1) such theory is focused on, but also the symmetric traceless tensor and the vector field relative to the states (NL = 2, NR = 0) and (NL = 0, NR = 2) which are massive in the lower-dimensional non-compactified space. While they are not even physical in the absence of compact dimensions, they provide a sample of states for which both momenta and winding numbers are non-vanishing, differently from the states (NL = 1, NR = 1). A quadratic action is therefore here built for the corresponding doubled fields. It results that its gauge invariance under the linearized double diffeomorphisms is based on a generalization of the usual weak constraint, giving rise to an extra mass term for the symmetric traceless tensor field, not otherwise detectable: this can be interpreted as a mere stringy effect in target space due to the simultaneous presence of momenta and windings. Furthermore, in the context of the generalized metric formulation, a non-linear extension of the gauge transformations is defined involving the constraint extended from the weak constraint that can be uniquely defined in triple products of fields. Finally, we show that the above mentioned stringy effect does not appear in the case of only one compact doubled space dimension.


2021 ◽  
Vol 62 (5) ◽  
pp. 052302
Author(s):  
Clay James Grewcoe ◽  
Larisa Jonke

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
A. D. Gallegos ◽  
U. Gürsoy ◽  
S. Verma ◽  
N. Zinnato

Abstract Non-Riemannian gravitational theories suggest alternative avenues to understand properties of quantum gravity and provide a concrete setting to study condensed matter systems with non-relativistic symmetry. Derivation of an action principle for these theories generally proved challenging for various reasons. In this technical note, we employ the formulation of double field theory to construct actions for a variety of such theories. This formulation helps removing ambiguities in the corresponding equations of motion. In particular, we embed Torsional Newton-Cartan gravity, Carrollian gravity and String Newton-Cartan gravity in double field theory, derive their actions and compare with the previously obtained results in literature.


2016 ◽  
Vol 125 ◽  
pp. 05017 ◽  
Author(s):  
Edvard Musaev

2018 ◽  
Vol 2018 (7) ◽  
Author(s):  
Tetsuji Kimura ◽  
Shin Sasaki ◽  
Kenta Shiozawa

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Eric Lescano ◽  
Jesús A. Rodríguez

Abstract The generalized Kerr-Schild ansatz (GKSA) is a powerful tool for constructing exact solutions in Double Field Theory (DFT). In this paper we focus in the heterotic formulation of DFT, considering up to four-derivative terms in the action principle, while the field content is perturbed by the GKSA. We study the inclusion of the generalized version of the Green-Schwarz mechanism to this setup, in order to reproduce the low energy effective heterotic supergravity upon parametrization. This formalism reproduces higher-derivative heterotic background solutions where the metric tensor and Kalb-Ramond field are perturbed by a pair of null vectors. Next we study higher-derivative contributions to the classical double copy structure. After a suitable identification of the null vectors with a pair of U(1) gauge fields, the dynamics is given by a pair of Maxwell equations plus higher derivative corrections in agreement with the KLT relation.


Sign in / Sign up

Export Citation Format

Share Document