double field theory
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 45)

H-INDEX

32
(FIVE YEARS 5)

Author(s):  
Eric Lescano

Abstract The present notes are based on three lectures, each ninety minutes long, prepared for the school “Integrability, Dualities and Deformations”, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually. These lectures, aimed at graduate students, require only a basic knowledge of string theory. The main goal is to introduce α′-corrections to the gravitational sector of different formulations of closed string theory and to reformulate them using novel techniques based on double field theory.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Stanislav Hronek ◽  
Linus Wulff

Abstract It has been shown by Marques and Nunez that the first α′-correction to the bosonic and heterotic string can be captured in the O(D, D) covariant formalism of Double Field Theory via a certain two-parameter deformation of the double Lorentz transformations. This deformation in turn leads to an infinite tower of α′-corrections and it has been suggested that they can be captured by a generalization of the Bergshoeff-de Roo identification between Lorentz and gauge degrees of freedom in an extended DFT formalism. Here we provide strong evidence that this indeed gives the correct α′2-corrections to the bosonic and heterotic string by showing that it leads to a cubic Riemann term for the former but not for the latter, in agreement with the known structure of these corrections including the coefficient of Riemann cubed.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Stephen Angus ◽  
Kyoungho Cho ◽  
Kanghoon Lee

Abstract We study the classical double copy for ungauged half-maximal supergravities using the Kaluza-Klein reduction of double field theory (DFT). We construct a general formula for the Kaluza-Klein (KK) reduction of the DFT Kerr-Schild ansatz. The KK reduction of the ansatz is highly nonlinear, but the associated equations of motion are linear. This linear structure implies that half-maximal supergravities admit a classical double copy. We show that their single copy is given by a pair of Maxwell-scalar theories, which are the KK reduction of a higher-dimensional single copy of DFT. We also investigate their T-duality transformations — both the Buscher rule and continuous O(D, D) rotations. Applying the Buscher rule to the Kerr BH, we obtain a solution with a nontrivial Kalb-Ramond field and dilaton. We also identify the single copy of Sen’s heterotic BH and the chiral null model and show that the chiral null model is self-dual under T-duality rotations.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Lev Astrakhantsev ◽  
Ilya Bakhmatov ◽  
Edvard T. Musaev

Abstract Field transformation rules of the standard fermionic T-duality require fermionic isometries to anticommute, which leads to complexification of the Killing spinors and results in complex valued dual backgrounds. We generalize the field transformations to the setting with non-anticommuting fermionic isometries and show that the resulting backgrounds are solutions of double field theory. Explicit examples of non-abelian fermionic T-dualities that produce real backgrounds are given. Some of our examples can be bosonic T-dualized into usual supergravity solutions, while the others are genuinely non-geometric. Comparison with alternative treatment based on sigma models on supercosets shows consistency.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Jose J. Fernandez-Melgarejo ◽  
Yuho Sakatani

We propose a Leibniz algebra, to be called DD^++, which is a generalization of the Drinfel’d double. We find that there is a one-to-one correspondence between a DD^++ and a Jacobi–Lie bialgebra, extending the known correspondence between a Lie bialgebra and a Drinfel’d double. We then construct generalized frame fields E_A{}^M\in\text{O}(D,D)\times\mathbb{R}^+EAM∈O(D,D)×ℝ+ satisfying the algebra \hat{\pounds}_{E_A}E_B = - X_{AB}{}^C\,E_C£̂EAEB=−XABCEC, where X_{AB}{}^CXABC are the structure constants of the DD^++ and \hat{\pounds}£̂ is the generalized Lie derivative in double field theory. Using the generalized frame fields, we propose the Jacobi–Lie TT-plurality and show that it is a symmetry of double field theory. We present several examples of the Jacobi–Lie TT-plurality with or without Ramond–Ramond fields and the spectator fields.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Falk Hassler ◽  
C. N. Pope ◽  
Hao-Yu Zhang

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Eric Lescano ◽  
Jesús A. Rodríguez

Abstract The generalized Kerr-Schild ansatz (GKSA) is a powerful tool for constructing exact solutions in Double Field Theory (DFT). In this paper we focus in the heterotic formulation of DFT, considering up to four-derivative terms in the action principle, while the field content is perturbed by the GKSA. We study the inclusion of the generalized version of the Green-Schwarz mechanism to this setup, in order to reproduce the low energy effective heterotic supergravity upon parametrization. This formalism reproduces higher-derivative heterotic background solutions where the metric tensor and Kalb-Ramond field are perturbed by a pair of null vectors. Next we study higher-derivative contributions to the classical double copy structure. After a suitable identification of the null vectors with a pair of U(1) gauge fields, the dynamics is given by a pair of Maxwell equations plus higher derivative corrections in agreement with the KLT relation.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
A. D. Gallegos ◽  
U. Gürsoy ◽  
S. Verma ◽  
N. Zinnato

Abstract Non-Riemannian gravitational theories suggest alternative avenues to understand properties of quantum gravity and provide a concrete setting to study condensed matter systems with non-relativistic symmetry. Derivation of an action principle for these theories generally proved challenging for various reasons. In this technical note, we employ the formulation of double field theory to construct actions for a variety of such theories. This formulation helps removing ambiguities in the corresponding equations of motion. In particular, we embed Torsional Newton-Cartan gravity, Carrollian gravity and String Newton-Cartan gravity in double field theory, derive their actions and compare with the previously obtained results in literature.


Sign in / Sign up

Export Citation Format

Share Document