closed string
Recently Published Documents


TOTAL DOCUMENTS

459
(FIVE YEARS 59)

H-INDEX

39
(FIVE YEARS 2)

Author(s):  
Andrea Fontanella ◽  
Juan Miguel Nieto Garcia

Abstract We find classical closed string solutions to the non-relativistic AdS$_5\times$S$^5$ string theory which are the analogue of the BMN and GKP solutions for the relativistic theory. We show that non-relativistic AdS$_5\times$S$^5$ string theory admits a $\mathbb{Z}_2$ orbifold symmetry which allows us to impose twisted boundary conditions. Among the solutions in the twisted sector, we find the one around which the semiclassical expansion in \href{https://arxiv.org/abs/2102.00008}{arXiv:2102.00008} takes place.


Author(s):  
Eric Lescano

Abstract The present notes are based on three lectures, each ninety minutes long, prepared for the school “Integrability, Dualities and Deformations”, that ran from 23 to 27 August 2021 in Santiago de Compostela and virtually. These lectures, aimed at graduate students, require only a basic knowledge of string theory. The main goal is to introduce α′-corrections to the gravitational sector of different formulations of closed string theory and to reformulate them using novel techniques based on double field theory.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Dieter Lüst ◽  
Chrysoula Markou ◽  
Pouria Mazloumi ◽  
Stephan Stieberger

Abstract The origin of the graviton from string theory is well understood: it corresponds to a massless state in closed string spectra, whose low-energy effective action, as extracted from string scattering amplitudes, is that of Einstein-Hilbert. In this work, we explore the possibility of such a string-theoretic emergence of ghost-free bimetric theory, a recently proposed theory that involves two dynamical metrics, that around particular backgrounds propagates the graviton and a massive spin-2 field, which has been argued to be a viable dark matter candidate. By choosing to identify the latter with a massive spin-2 state of open string spectra, we compute tree-level three-point string scattering amplitudes that describe interactions of the massive spin-2 with itself and with the graviton. With the mass of the external legs depending on the string scale, we discover that extracting the corresponding low-energy effective actions in four spacetime dimensions is a subtle but consistent process and proceed to appropriately compare them with bimetric theory. Our findings consist in establishing that string and bimetric theory provide to lowest order the same set of two-derivative terms describing the interactions of the massive spin-2 with itself and with the graviton, albeit up to numerical coefficient discrepancies, a fact that we analyze and interpret. We conclude with a mention of future investigations.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Thibaut Coudarchet ◽  
Hervé Partouche

Abstract We derive the masses acquired at one loop by massless scalars in the Neumann-Dirichlet sector of open strings, when supersymmetry is spontaneously broken. It is done by computing two-point functions of “boundary-changing vertex operators” inserted on the boundaries of the annulus and Möbius strip. This requires the evaluation of correlators of “excited boundary-changing fields,” which are analogous to excited twist fields for closed strings. We work in the type IIB orientifold theory compactified on T2× T4/ℤ2, where $$ \mathcal{N} $$ N = 2 supersymmetry is broken to $$ \mathcal{N} $$ N = 0 by the Scherk-Schwarz mechanism implemented along T2. Even though the full expression of the squared masses is complicated, it reduces to a very simple form when the lowest scale of the background is the supersymmetry breaking scale M3/2. We use our results to analyze in this regime the stability at the quantum level of the moduli fields arising in the Neumann-Dirichlet sector. This completes the study of ref. [32], where the quantum masses of all other types of moduli arising in the open- or closed-string sectors are derived. Ultimately, we identify all brane configurations that produce backgrounds without tachyons at one loop and yield an effective potential exponentially suppressed, or strictly positive with runaway behavior of M3/2.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Yikun Jiang ◽  
Manki Kim ◽  
Gabriel Wong

Abstract This is the second in a two-part paper devoted to studying entanglement entropy and edge modes in the A model topological string theory. This theory enjoys a gauge-string (Gopakumar-Vafa) duality which is a topological analogue of AdS/CFT. In part 1, we defined a notion of generalized entropy for the topological closed string theory on the resolved conifold. We provided a canonical interpretation of the generalized entropy in terms of the q-deformed entanglement entropy of the Hartle-Hawking state. We found string edge modes transforming under a quantum group symmetry and interpreted them as entanglement branes. In this work, we provide the dual Chern-Simons gauge theory description. Using Gopakumar-Vafa duality, we map the closed string theory Hartle-Hawking state to a Chern-Simons theory state containing a superposition of Wilson loops. These Wilson loops are dual to closed string worldsheets that determine the partition function of the resolved conifold. We show that the undeformed entanglement entropy due to cutting these Wilson loops reproduces the bulk generalized entropy and therefore captures the entanglement underlying the bulk spacetime. Finally, we show that under the Gopakumar-Vafa duality, the bulk entanglement branes are mapped to a configuration of topological D-branes, and the non-local entanglement boundary condition in the bulk is mapped to a local boundary condition in the gauge theory dual. This suggests that the geometric transition underlying the gauge-string duality may also be responsible for the emergence of entanglement branes.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
William Donnelly ◽  
Yikun Jiang ◽  
Manki Kim ◽  
Gabriel Wong

Abstract Progress in identifying the bulk microstate interpretation of the Ryu-Takayanagi formula requires understanding how to define entanglement entropy in the bulk closed string theory. Unfortunately, entanglement and Hilbert space factorization remains poorly understood in string theory. As a toy model for AdS/CFT, we study the entanglement entropy of closed strings in the topological A-model in the context of Gopakumar-Vafa duality. We will present our results in two separate papers. In this work, we consider the bulk closed string theory on the resolved conifold and give a self-consistent factorization of the closed string Hilbert space using extended TQFT methods. We incorporate our factorization map into a Frobenius algebra describing the fusion and splitting of Calabi-Yau manifolds, and find string edge modes transforming under a q-deformed surface symmetry group. We define a string theory analogue of the Hartle-Hawking state and give a canonical calculation of its entanglement entropy from the reduced density matrix. Our result matches with the geometrical replica trick calculation on the resolved conifold, as well as a dual Chern-Simons theory calculation which will appear in our next paper [1]. We find a realization of the Susskind-Uglum proposal identifying the entanglement entropy of closed strings with the thermal entropy of open strings ending on entanglement branes. We also comment on the BPS microstate counting of the entanglement entropy. Finally we relate the nonlocal aspects of our factorization map to analogous phenomenon recently found in JT gravity.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ziqi Yan

Abstract Nonrelativistic string theory is a self-contained corner of string theory, with its string spectrum enjoying a Galilean-invariant dispersion relation. This theory is unitary and ultraviolet complete, and can be studied from first principles. In these notes, we focus on the bosonic closed string sector. In curved spacetime, nonrelativistic string theory is defined by a renormalizable quantum nonlinear sigma model in background fields, following certain symmetry principles that disallow any deformation towards relativistic string theory. We review previous proposals of such symmetry principles and propose a modified version that might be useful for supersymmetrizations. The appropriate target-space geometry determined by these local spacetime symmetries is string Newton-Cartan geometry. This geometry is equipped with a two-dimensional foliation structure that is restricted by torsional constraints. Breaking the symmetries that give rise to such torsional constraints in the target space will in general generate quantum corrections to a marginal deformation in the worldsheet quantum field theory. Such a deformation induces a renormalization group flow towards sigma models that describe relativistic strings.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Carlo Maccaferri ◽  
Jakub Vošmera

Abstract In this paper, which is the last of a series including [1, 2] we first verify that the two open-closed effective potentials derived in the previous paper from the WZW theory in the large Hilbert space and the A∞ theory in the small Hilbert space have the same vacuum structure. In particular, we show that mass-term deformations given by the effective (open)2-closed couplings are the same, provided the effective tadpole is vanishing to first order in the closed string deformation. We show that this condition is always realized when the worldsheet BCFT enjoys a global $$ \mathcal{N} $$ N = 2 superconformal symmetry and the deforming closed string belongs to the chiral ring in both the holomorphic and anti-holomorphic sector. In this case it is possible to explicitly evaluate the mass deformation by localizing the SFT Feynman diagrams to the boundary of world-sheet moduli space, reducing the amplitude to a simple open string two-point function. As a non-trivial check of our construction we couple a constant Kalb-Ramond closed string state to the OSFT on the D3–D(−1) system and we show that half of the bosonic blowing-up moduli become tachyonic, making the system condense to a bound state whose binding energy we compute exactly to second order in the closed string deformation, finding agreement with the literature.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Carlo Maccaferri ◽  
Jakub Vošmera

Abstract This is the second paper of a series of three. We construct effective open-closed superstring couplings by classically integrating out massive fields from open superstring field theories coupled to an elementary gauge invariant tadpole proportional to an on-shell closed string state in both large and small Hilbert spaces, in the NS sector. This source term is well known in the WZW formulation and by explicitly performing a novel large Hilbert space perturbation theory we are able to characterize the first orders of the vacuum shift solution, its obstructions and the non-trivial open-closed effective couplings in closed form. With the aim of getting all order results, we also construct a new observable in the A∞ theory in the small Hilbert space which correctly provides a gauge invariant coupling to physical closed strings and which descends from the WZW open-closed coupling upon partial gauge fixing and field redefinition. Armed with this new A∞ observable we use tensor co-algebra techniques to efficiently package the whole perturbation theory necessary for computing the effective action and we give all order results for the open-closed effective couplings in the small Hilbert space.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Carlo Maccaferri ◽  
Jakub Vošmera

Abstract This is the first of a series of three papers on open string field theories based on Witten star product deformed with a gauge invariant open/closed coupling. This de- formation is a tree-level tadpole which destabilizes the initial perturbative vacuum. We discuss the existence of vacuum-shift solutions which cancel the tadpole and represent a new configuration where the initial D-brane system has adapted to the change in the closed string background. As an example we consider the bulk deformation which changes the compactification radius and, to first order in the deformation, we reproduce the shift in the mass of the open string KK modes from the new kinetic operator after the vacuum shift. We also discuss the possibility of taming closed string degenerations with the open string propagator in the simplest amplitude corresponding to two closed strings off a disk.


Sign in / Sign up

Export Citation Format

Share Document