scholarly journals Dark matter spectra from the electroweak to the Planck scale

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Christian W. Bauer ◽  
Nicholas L. Rodd ◽  
Bryan R. Webber

Abstract We compute the decay spectrum for dark matter (DM) with masses above the scale of electroweak symmetry breaking, all the way to the Planck scale. For an arbitrary hard process involving a decay to the unbroken standard model, we determine the prompt distribution of stable states including photons, neutrinos, positrons, and antiprotons. These spectra are a crucial ingredient in the search for DM via indirect detection at the highest energies as being probed in current and upcoming experiments including IceCube, HAWC, CTA, and LHAASO. Our approach improves considerably on existing methods, for instance, we include all relevant electroweak interactions.

2014 ◽  
Vol 89 (1) ◽  
Author(s):  
Emidio Gabrielli ◽  
Matti Heikinheimo ◽  
Kristjan Kannike ◽  
Antonio Racioppi ◽  
Martti Raidal ◽  
...  

2007 ◽  
Vol 22 (30) ◽  
pp. 5502-5512
Author(s):  
D. I. KAZAKOV

Review of recent developments in attempts to go beyond the Standard Model is given. We concentrate on three main unresolved problems: mechanism of electroweak symmetry breaking, expected new physics at the TeV scale (mainly SUSY) and the origin of the Dark matter.


2001 ◽  
Vol 16 (13) ◽  
pp. 835-844
Author(s):  
ILIA GOGOLADZE ◽  
MIRIAN TSULAIA

We suggest a new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U (1)A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the value of the corresponding Fayet–Illiopoulos ξ-term.


2003 ◽  
Vol 18 (22) ◽  
pp. 3935-3946 ◽  
Author(s):  
THOMAS APPELQUIST

In this talk I discuss the problem of accounting for light neutrino masses in theories with dynamical electroweak symmetry breaking. I will first describe this problem generally in a class of extended technicolor (ETC) models, describing the full set of Dirac and Majorana masses that arise in such theories. I will then present an explicit model exhibiting a combination of suppressed Dirac masses and a seesaw involving dynamically generated condensates of standard-model singlet, ETC-nonsinglet fermions. Because of the suppression of the Dirac neutrino mass terms, a seesaw yielding realistic neutrino masses does not require superheavy Majorana masses; indeed, the Majorana masses are typically much smaller than the largest ETC scale.


2003 ◽  
Vol 18 (14) ◽  
pp. 967-975 ◽  
Author(s):  
J. G. KÖRNER ◽  
CHUN LIU

A supersymmetric model with two copies of the Standard Model gauge groups is constructed in the gauge mediated supersymmetry breaking scenario. The supersymmetry breaking messengers are in a simple form. The Standard Model is obtained after first step gauge symmetry breaking. In the case of one copy of the gauge interactions being strong, a scenario of electroweak symmetry breaking is discussed, and the gauginos are generally predicted to be heavier than the sfermions.


Sign in / Sign up

Export Citation Format

Share Document