NEUTRINO MASSES WITH DYNAMICAL ELECTROWEAK SYMMETRY BREAKING

2003 ◽  
Vol 18 (22) ◽  
pp. 3935-3946 ◽  
Author(s):  
THOMAS APPELQUIST

In this talk I discuss the problem of accounting for light neutrino masses in theories with dynamical electroweak symmetry breaking. I will first describe this problem generally in a class of extended technicolor (ETC) models, describing the full set of Dirac and Majorana masses that arise in such theories. I will then present an explicit model exhibiting a combination of suppressed Dirac masses and a seesaw involving dynamically generated condensates of standard-model singlet, ETC-nonsinglet fermions. Because of the suppression of the Dirac neutrino mass terms, a seesaw yielding realistic neutrino masses does not require superheavy Majorana masses; indeed, the Majorana masses are typically much smaller than the largest ETC scale.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Christian W. Bauer ◽  
Nicholas L. Rodd ◽  
Bryan R. Webber

Abstract We compute the decay spectrum for dark matter (DM) with masses above the scale of electroweak symmetry breaking, all the way to the Planck scale. For an arbitrary hard process involving a decay to the unbroken standard model, we determine the prompt distribution of stable states including photons, neutrinos, positrons, and antiprotons. These spectra are a crucial ingredient in the search for DM via indirect detection at the highest energies as being probed in current and upcoming experiments including IceCube, HAWC, CTA, and LHAASO. Our approach improves considerably on existing methods, for instance, we include all relevant electroweak interactions.


2001 ◽  
Vol 16 (13) ◽  
pp. 835-844
Author(s):  
ILIA GOGOLADZE ◽  
MIRIAN TSULAIA

We suggest a new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U (1)A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the value of the corresponding Fayet–Illiopoulos ξ-term.


2003 ◽  
Vol 18 (14) ◽  
pp. 967-975 ◽  
Author(s):  
J. G. KÖRNER ◽  
CHUN LIU

A supersymmetric model with two copies of the Standard Model gauge groups is constructed in the gauge mediated supersymmetry breaking scenario. The supersymmetry breaking messengers are in a simple form. The Standard Model is obtained after first step gauge symmetry breaking. In the case of one copy of the gauge interactions being strong, a scenario of electroweak symmetry breaking is discussed, and the gauginos are generally predicted to be heavier than the sfermions.


2014 ◽  
Vol 89 (1) ◽  
Author(s):  
Emidio Gabrielli ◽  
Matti Heikinheimo ◽  
Kristjan Kannike ◽  
Antonio Racioppi ◽  
Martti Raidal ◽  
...  

2000 ◽  
Vol 15 (01) ◽  
pp. 81-103
Author(s):  
YOSHIHARU KAWAMURA ◽  
TATSUO KOBAYASHI ◽  
MANABU WATANABE

We study μ and B-parameters in the minimal supersymmetric standard model (MSSM) based on the radiative electroweak symmetry breaking scenario using "bottom-up" approach and show how useful our approach is to select a phenomenologically viable model beyond the MSSM under the assumption that the underlying theory is a string model or a gauge-Yukawa unified gauge model.


2010 ◽  
Vol 25 (09) ◽  
pp. 691-701
Author(s):  
TATSURU KIKUCHI

Recently, conceptually new physics beyond the Standard Model has been proposed by Georgi, where a new physics sector becomes conformal and provides "unparticle" which couples to the Standard Model sector through higher dimensional operators in low energy effective theory. Among several possibilities, we focus on operators involving the unparticle and Higgs boson. Once the Higgs develops the vacuum expectation value (VEV), the conformal symmetry is broken and as a result, the mixing between the unparticle and the Higgs boson emerges. In the former part of this paper, we consider a natural realization of bosonic seesaw in the context of unparticle physics. In this framework, the negative mass squared or the electroweak symmetry breaking vacuum is achieved as a result of mass matrix diagonalization. So, the bosonic seesaw mechanism for the electroweak symmetry breaking can naturally be understood in the framework of unparticle physics. In the latter part of this paper, we consider the unparticle as a hidden sector of supersymmetry breaking, and give some phenomenological consequences of this scenario. The result shows that there is a possibility for the unparticle as a hidden sector in SUSY breaking sector, and can provide a solution to the μ problem in SUSY models.


Sign in / Sign up

Export Citation Format

Share Document