scholarly journals Infrared effects in the late stages of black hole evaporation

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Éanna É. Flanagan

Abstract As a black hole evaporates, each outgoing Hawking quantum carries away some of the black holes asymptotic charges associated with the extended Bondi-Metzner-Sachs group. These include the Poincaré charges of energy, linear momentum, intrinsic angular momentum, and orbital angular momentum or center-of-mass charge, as well as extensions of these quantities associated with supertranslations and super-Lorentz transformations, namely supermomentum, superspin and super center-of-mass charges (also known as soft hair). Since each emitted quantum has fluctuations that are of order unity, fluctuations in the black hole’s charges grow over the course of the evaporation. We estimate the scale of these fluctuations using a simple model. The results are, in Planck units: (i) The black hole position has a uncertainty of $$ \sim {M}_i^2 $$ ∼ M i 2 at late times, where Mi is the initial mass (previously found by Page). (ii) The black hole mass M has an uncertainty of order the mass M itself at the epoch when M ∼ $$ {M}_i^{2/3} $$ M i 2 / 3 , well before the Planck scale is reached. Correspondingly, the time at which the evaporation ends has an uncertainty of order $$ \sim {M}_i^2 $$ ∼ M i 2 . (iii) The supermomentum and superspin charges are not independent but are determined from the Poincaré charges and the super center-of-mass charges. (iv) The supertranslation that characterizes the super center-of-mass charges has fluctuations at multipole orders l of order unity that are of order unity in Planck units. At large l, there is a power law spectrum of fluctuations that extends up to l ∼ $$ {M}_i^2/M $$ M i 2 / M , beyond which the fluctuations fall off exponentially, with corresponding total rms shear tensor fluctuations ∼ MiM−3/2.

2013 ◽  
Vol 28 (11) ◽  
pp. 1350037 ◽  
Author(s):  
O. B. ZASLAVSKII

We show that recent observation made by Grib and Pavlov, [A. A. Grib and Yu. V. Pavlov, Europhys. Lett.101, 20004 (2013)] for the Kerr black hole is valid in the general case of rotating axially symmetric metric. Namely, collision of two particles in the ergosphere leads to indefinite growth of the energy in the center-of-mass frame, provided the angular momentum of one of the two particles is negative and increases without limit for a fixed energy at infinity. General approach enabled us to elucidate why the role of the ergosphere is crucial in this process.


2013 ◽  
Vol 22 (06) ◽  
pp. 1350028 ◽  
Author(s):  
O. B. ZASLAVSKII

If two particles collide near the black hole horizon, the energy in their center of mass (CM) frame can grow indefinitely (the so-called Bañados, Silk and West (BSW) effect). This requires fine-tuning the parameters (the energy–momentum, angular momentum or electric charge) of one particle. We show that the CM energy can be unbound also for collisions in the spacetime of quasiblack holes (QBHs) (the objects on the threshold of forming the horizon which do not collapse). It does not require special fine-tuning of parameters and occurs when any particle inside a QBH having a finite energy collides with the particle that entered a QBH from the outside region.


2011 ◽  
Vol 20 (05) ◽  
pp. 717-728 ◽  
Author(s):  
CARLOS KOZAMEH ◽  
RAUL ORTEGA ◽  
TERESITA ROJAS

We give equations of motion for the center of mass and intrinsic angular momentum of axially symmetric sources that emit gravitational radiation. This symmetry is used to uniquely define the notion of total angular momentum. The center of mass then singles out the intrinsic angular momentum of the system.


Author(s):  
Ramón Bécar ◽  
P. A. González ◽  
Yerko Vásquez

AbstractWe consider a three-dimensional rotating AdS black hole, which is a solution of Hořava gravity in the low-energy limit that corresponds to a Lorentz-violating version of the BTZ black hole, and we analyze the effect of the breaking of Lorentz invariance on the possibility that the black hole can act as a particle accelerator by analyzing the energy in the center-of-mass (CM) frame of two colliding particles in the vicinity of its horizons. We find that the critical angular momentum of particles increases when the Hořava parameter $$\xi $$ ξ increases and when the aether parameter b increases. Also, the particles can collide on the inner horizon with arbitrarily high CM energy if one of the particles has a critical angular momentum, possible for the BSW process. Here it is essential that, while for the extremal BTZ black hole the particles with critical angular momentum only can exist on the degenerate horizon, for the Lorentz-violating version of the BTZ black hole the particle with critical angular momentum can exist in a region away from the degenerate horizon. It is worth mentioning that the results exposed in this manuscript can be applied for the covariant version of Hořava gravity, where the covariant definition of the center-of-mass energy is well defined.


2012 ◽  
Vol 27 (03) ◽  
pp. 1250017 ◽  
Author(s):  
IBRAR HUSSAIN

The center-of-mass (CM) energy of collision for two uncharged particles falling freely from rest at infinity is investigated in the background of charged, rotating and accelerating black hole. It is found that the CM energy of collision is unlimited at the acceleration horizon and at the event horizon (in the extremal case) if one of the colliding particles has critical angular momentum and the other one has a proper angular momentum such that the particle can reach the horizon.


Author(s):  
Michele Maggiore

An introduction to advanced tools of General Relativity, later used in the study of binary black-hole coalescences. Hamiltonian formulation of General Relativity, ADM mass and angular momentum, irreducible black-hole mass, Newman-Penrose scalars and gravitational radiation.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950127 ◽  
Author(s):  
Pameli Saha ◽  
Ujjal Debnath

Here, we explore the dynamics of particle near the horizon of charged Mandal–Sengupta–Wadia (MSW) black hole in 2 + 1 dimensions. We analyze angular momentum and potential energy for null and time-like geodesics. We also appraise the high center-of-mass energy of coming particles from rest at infinity near the horizon of the charged MSW black hole in 2 + 1 dimension for the extremal case. Finally, we study the ISCO and MBCO radii for this type of black hole.


Sign in / Sign up

Export Citation Format

Share Document