hole position
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 19)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Zhen Sun ◽  
Pingfa Feng ◽  
Long Zeng ◽  
Shaoqiu Zhang ◽  
Xi Cheng

Abstract The machining of multi-hole parts often has complex correlated position accuracy requirements. When some position accuracies do not meet the requirements, several hole axes need to be adjusted. Previous methods usually correct all deviated axes to their theoretical locations. However, the correction workload is too large and inefficient. This paper proposes an efficient and adaptive hole position correction model for multi-hole part. First, the method establishes the topological relationship of the holes and faces on the part according to the position accuracy requirements of the multi-hole part. Then, the goal is to minimize the number of holes that need to be corrected. In this model, the parallelism of holes, perpendicularity, and other constraints are considered. The simulation and experimental results show that the use of this model can effectively reduce the number of holes that need to be corrected during the compensation of the position error between holes. It improves the efficiency in the subsequent compensation process significantly.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jiayuan Luo ◽  
Xiangyang Xu ◽  
Peitang Wei ◽  
Chengxiang Shi ◽  
Guofeng Liu

The motion smoothness of 3C locking robot directly affects the machining performance. Improving the motion smoothness can optimize the motion trajectory and reduce the processing time. In this paper, a novel machining path optimization model including motion smoothness is built by employing the coordinate boundary of velocity and acceleration after evaluating the machining motion smoothness of the 3C locking robot. Secondly, based on the creation of the ant colony of adaptive function algorithm, the optimization model of the 3C locking robot in the situation of fixed bolt hole position and floating bolt hole position is resolved. Lastly, the proposed approach collects and analyses a huge amount of data to enable robots to make on-the-fly decisions in the middle of production, even when faced with unexpected circumstances. In the Spark distributed environment, we use the conventional K clustering technique to improve the final output utilizing clustering means. The results show that the machining path optimization of fixed hole considering the motion smoothness improves the smoothness but extends the machining path; the cooperative machining path optimization of multiregion floating bolt holes can significantly improve the motion smoothness and effectively reduce the length of the path. The research results provide theoretical support and design guidance for designers.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Éanna É. Flanagan

Abstract As a black hole evaporates, each outgoing Hawking quantum carries away some of the black holes asymptotic charges associated with the extended Bondi-Metzner-Sachs group. These include the Poincaré charges of energy, linear momentum, intrinsic angular momentum, and orbital angular momentum or center-of-mass charge, as well as extensions of these quantities associated with supertranslations and super-Lorentz transformations, namely supermomentum, superspin and super center-of-mass charges (also known as soft hair). Since each emitted quantum has fluctuations that are of order unity, fluctuations in the black hole’s charges grow over the course of the evaporation. We estimate the scale of these fluctuations using a simple model. The results are, in Planck units: (i) The black hole position has a uncertainty of $$ \sim {M}_i^2 $$ ∼ M i 2 at late times, where Mi is the initial mass (previously found by Page). (ii) The black hole mass M has an uncertainty of order the mass M itself at the epoch when M ∼ $$ {M}_i^{2/3} $$ M i 2 / 3 , well before the Planck scale is reached. Correspondingly, the time at which the evaporation ends has an uncertainty of order $$ \sim {M}_i^2 $$ ∼ M i 2 . (iii) The supermomentum and superspin charges are not independent but are determined from the Poincaré charges and the super center-of-mass charges. (iv) The supertranslation that characterizes the super center-of-mass charges has fluctuations at multipole orders l of order unity that are of order unity in Planck units. At large l, there is a power law spectrum of fluctuations that extends up to l ∼ $$ {M}_i^2/M $$ M i 2 / M , beyond which the fluctuations fall off exponentially, with corresponding total rms shear tensor fluctuations ∼ MiM−3/2.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3798
Author(s):  
Jin-Young Choi ◽  
Min-Jung Kim ◽  
Seong-Hun Kim ◽  
Kyu-Rhim Chung ◽  
Gerald Nelson

The orthodontic miniscrew is driven into bone in a clockwise direction. Counter-clockwise rotational force applied to the implanted miniscrew can degrade the stability. The purpose of this three-dimensional finite element study was to figure out the effect of shifting the miniscrew head hole position from the long axis. Two miniscrew models were developed, one with the head hole at the long axis and the other with an eccentric hole position. One degree of counter-clockwise rotation was applied to both groups, and the maximum Von-Mises stress and moment was measured under various wire insertion angles from −60° to +60°. All Von-Mises stress and moments increased with an increase in rotational angle or wire insertion angle. The increasing slope of moment in the eccentric hole group was significantly higher than that in the centric hole group. Although the maximum Von-Mises stress was higher in the eccentric hole group, the distribution of stress was not very different from the centric hole group. As the positive wire insertion angles generated a higher moment under a counter-clockwise rotational force, it is recommended to place the head hole considering the implanting direction of the miniscrew. Clinically, multidirectional and higher forces can be applied to the miniscrew with an eccentric head hole position.


Author(s):  
Abdurrahim Dal ◽  
Tuncay Karaçay

Aerostatic journal bearing applications mainly focus on high-speed precision machining, so predictable and smooth functioning of the system is crucial. Air is supplied to the bearing through a number of orifices and any unevenness in the size of these orifices will affect the performance of the system. The size difference could be due to manufacturing error and/or blockage of the orifice because of foreign materials in the air system. In this study, the performance of an aerostatic bearing with a partially blocked orifice is numerically investigated. Firstly, the airflow in the bearing clearance was modeled with Reynolds equation and this equation was numerically solved with the finite difference and differential transform hybrid method to obtain the pressure distribution. Then, the force and the stiffness are calculated from the pressure distribution for different blockage cases of the orifice and different blockage ratios. The results show that the partial blockage of the orifice significantly changes the performance of the system in a positive or a negative way according to the feeding hole position, and the blockage ratio also affects performance.


2020 ◽  
Vol 21 ◽  
pp. 100759
Author(s):  
Mauro Dobran ◽  
Fabrizio Mancini ◽  
Davide Nasi ◽  
Simona Lattanzi ◽  
Marco Fogante ◽  
...  

2020 ◽  
pp. 146808742093649
Author(s):  
Zhixia He ◽  
Han Zhou ◽  
Lian Duan ◽  
Min Xu ◽  
Zhou Chen ◽  
...  

The cavitating flow in diesel injector nozzles plays a vital role in spray atomization and formation of fuel–air mixture, since vortex-induced string cavitation has recently been found a much more influence on spray compared to the ordinary geometry-induced film cavitation. In this study, in order to investigating string cavitation and its’ enhancement on spray, the visualization experimental platform for the real-size optical tapered-hole nozzle was built based on the high-pressure common rail fuel injection system. Groups of optical nozzles with different geometries were designed for exploring the couple effects of several nozzle geometric parameters, including nozzle sac chamber depth, nozzle-hole position height and needle lift, on the three-dimension vortex flow structure and then on the string cavitation and spray characteristics. Results indicated that the string cavitation characteristics are tightly associated with couple characteristics of the parameters. The stable and strong string cavitation during the whole injection process can be obtained in the Min-sac nozzle with the high hole position under the low needle lift. The string cavitation extends to the nozzle-hole outlet, and subsequently induces the special hollow cone spray with air in the spray center location and corresponding a larger spray cone angle even under not so high injection pressure.


Author(s):  
Myoung-Su Choi ◽  
Dong-Hyuk Lee ◽  
Jae-Han Park ◽  
Ji-Hun Bae
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document