scholarly journals Zilch vortical effect, Berry phase, and kinetic theory

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Xu-Guang Huang ◽  
Pavel Mitkin ◽  
Andrey V. Sadofyev ◽  
Enrico Speranza

Abstract Rotating photon gas exhibits a chirality separation along the angular velocity which is manifested through a generation of helicity and zilch currents. In this paper we study this system using the corresponding Wigner function and construct elements of the covariant chiral kinetic theory for photons from first principles. The Wigner function is solved order-by-order in ħ and the unconstrained terms are fixed by matching with quantum field theory results. We further consider the zilch and helicity currents and show that both manifestations of the chirality transport originate in the Berry phase of photons similarly to other chiral effects. Constructing the kinetic description from the Wigner function we find that the frame vector needed to fix the definition of spin of a massless particle is, in fact, the vector of the residual gauge freedom for the free Maxwell theory. We also briefly comment on the possible relation between vortical responses in rotating systems of massless particles and the anomalies of underlying quantum field theory.

2020 ◽  
Vol 102 (24) ◽  
Author(s):  
Po-Shen Hsin ◽  
Anton Kapustin ◽  
Ryan Thorngren

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Tomáš Blažek ◽  
Peter Maták

AbstractNonequilibrium quantum field theory is often used to derive an approximation for the evolution of number densities and asymmetries in astroparticle models when a more precise treatment of quantum thermal effects is required. This work presents an alternative framework using the zero-temperature quantum field theory, S-matrix unitarity, and classical Boltzmann equation as starting points leading to a set of rules for calculations of thermal corrections to reaction rates. Statistical factors due to on-shell intermediate states are obtained from the cuts of forward diagrams with multiple spectator lines. It turns out that it is equivalent to cutting closed diagrams on a cylindrical surface.


2014 ◽  
Vol 6 (2) ◽  
pp. 1079-1105
Author(s):  
Rahul Nigam

In this review we study the elementary structure of Conformal Field Theory in which is a recipe for further studies of critical behavior of various systems in statistical mechanics and quantum field theory. We briefly review CFT in dimensions which plays a prominent role for example in the well-known duality AdS/CFT in string theory where the CFT lives on the AdS boundary. We also describe the mapping of the theory from the cylinder to a complex plane which will help us gain an insight into the process of radial quantization and radial ordering. Finally we will develop the representation of the Virasoro algebra which is the well-known "Verma module".  


Sign in / Sign up

Export Citation Format

Share Document