scholarly journals Correlator correspondences for subregular $$ \mathcal{W} $$-algebras and principal $$ \mathcal{W} $$-superalgebras

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Thomas Creutzig ◽  
Yasuaki Hikida ◽  
Devon Stockal

Abstract We examine a strong/weak duality between a Heisenberg coset of a theory with $$ \mathfrak{sl} $$ sl n subregular $$ \mathcal{W} $$ W -algebra symmetry and a theory with a $$ \mathfrak{sl} $$ sl n|1-structure. In a previous work, two of the current authors provided a path integral derivation of correlator correspondences for a series of generalized Fateev-Zamolodchikov-Zamolodchikov (FZZ-)duality. In this paper, we derive correlator correspondences in a similar way but for a different series of generalized duality. This work is a part of the project to realize the duality of corner vertex operator algebras proposed by Gaiotto and Rapčák and partly proven by Linshaw and one of us in terms of two dimensional conformal field theory. We also examine another type of duality involving an additional pair of fermions, which is a natural generalization of the fermionic FZZ-duality. The generalization should be important since a principal $$ \mathcal{W} $$ W -superalgebra appears as its symmetry and the properties of the superalgebra are less understood than bosonic counterparts.

2012 ◽  
Vol 14 (04) ◽  
pp. 1250029 ◽  
Author(s):  
A. M. SEMIKHATOV ◽  
I. YU. TIPUNIN

Two related constructions are associated with screening operators in models of two-dimensional conformal field theory. One is a local system constructed in terms of the braided vector space X spanned by the screening species in a given CFT model and the space of vertex operators Y and the other is the Nichols algebra 𝔅(X) and the category of its Yetter–Drinfeld modules, which we propose as an algebraic counterpart, in a "braided" version of the Kazhdan–Lusztig duality, of the representation category of vertex-operator algebras realized in logarithmic CFT models.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Thomas Creutzig ◽  
Yasuaki Hikida

Abstract We examine strong/weak dualities in two dimensional conformal field theories by generalizing the Fateev-Zamolodchikov-Zamolodchikov (FZZ-)duality between Witten’s cigar model described by the $$ \mathfrak{sl}(2)/\mathfrak{u}(1) $$ sl 2 / u 1 coset and sine-Liouville theory. In a previous work, a proof of the FZZ-duality was provided by applying the reduction method from $$ \mathfrak{sl}(2) $$ sl 2 Wess-Zumino-Novikov-Witten model to Liouville field theory and the self-duality of Liouville field theory. In this paper, we work with the coset model of the type $$ \mathfrak{sl}\left(N+1\right)/\left(\mathfrak{sl}(N)\times \mathfrak{u}(1)\right) $$ sl N + 1 / sl N × u 1 and investigate the equivalence to a theory with an $$ \mathfrak{sl}\left(N+\left.1\right|N\right) $$ sl N + 1 N structure. We derive the duality explicitly for N = 2, 3 by applying recent works on the reduction method extended for $$ \mathfrak{sl}(N) $$ sl N and the self-duality of Toda field theory. Our results can be regarded as a conformal field theoretic derivation of the duality of the Gaiotto-Rapčák corner vertex operator algebras Y0,N,N+1[ψ] and YN,0,N+1[ψ−1].


Sign in / Sign up

Export Citation Format

Share Document