Variable sensitivity of fungi and bacteria to compounds produced by the metapleural glands of leaf-cutting ants

2002 ◽  
Vol 49 (4) ◽  
pp. 363-370 ◽  
Author(s):  
A. N. M. Bot ◽  
D. Ortius-Lechner ◽  
K. Finster ◽  
R. Maile ◽  
J. J. Boomsma
2021 ◽  
Author(s):  
J. Howe ◽  
M. Schiøtt ◽  
J. J. Boomsma

AbstractQueens of the inquiline social parasite Acromyrmex insinuator are known to infiltrate mature colonies of Acromyrmex echinatior and to exploit the host’s perennial workforce by producing predominantly reproductive individuals while suppressing host reproduction. Here we report three cases of an A. insinuator queen having joined an incipient colony of A. echinatior that contained only the founding host-queen and her small symbiotic fungus garden. We conjectured that 1:1 host-inquiline co-founding—a phenomenon that has only rarely been reported in ants—may imply that the presence of an A. insinuator queen may incur benefits to the host by increasing survival of its incipient colonies. We observed that the parasite queens neither foraged nor defended the nest against intruders. However, the parasite queens interacted with the host and fungus in a way that could be consistent with grooming and/or with contributing eggs. These observations may help explain why A. insinuator queens have maintained metapleural glands, even though they are smaller than those of host queens, and why A. insinuator has lost the large foraging worker caste but not the small worker caste.


2012 ◽  
Vol 279 (1745) ◽  
pp. 4215-4222 ◽  
Author(s):  
Sze Huei Yek ◽  
David R. Nash ◽  
Annette B. Jensen ◽  
Jacobus J. Boomsma

Ants have paired metapleural glands (MGs) to produce secretions for prophylactic hygiene. These exocrine glands are particularly well developed in leaf-cutting ants, but whether the ants can actively regulate MG secretion is unknown. In a set of controlled experiments using conidia of five fungi, we show that the ants adjust the amount of MG secretion to the virulence of the fungus with which they are infected. We further applied fixed volumes of MG secretion of ants challenged with constant conidia doses to agar mats of the same fungal species. This showed that inhibition halos were significantly larger for ants challenged with virulent and mild pathogens/weeds than for controls and Escovopsis -challenged ants. We conclude that the MG defence system of leaf-cutting ants has characteristics reminiscent of an additional cuticular immune system, with specific and non-specific components, of which some are constitutive and others induced.


2015 ◽  
Vol 44 (5) ◽  
pp. 444-454 ◽  
Author(s):  
Alexsandro Santana Vieira ◽  
Maria Izabel Camargo-Mathias ◽  
Flavio Roces

2014 ◽  
Vol 64 (3) ◽  
pp. 277-294
Author(s):  
Alexsandro Santana Vieira ◽  
Odair Correa Bueno ◽  
Maria Izabel Camargo-Mathias

The metapleural glands are considered an autapomorphic structure to ants and probable have an antibiotic or antifungal function. The present study was aimed at investigating the ultrastructural morphology of the metapleural glands in ants which have different feeding types: from fungus-growing ants, the higher and lower attine, and non-fungus-growing ants from the tribes Blepharidattini and Ectatommini analyzed by transmission electron microscopy. Plasma membrane invaginations in secretory cells of both fungus-growing and non-fungus-growing ants facilitate absorption of extracellular material from hemolymph. Higher and lower attines differed slightly from non-fungus-growing ants, by the presence of oval secretory cells and well-developed RER in the metapleural glands, which indicates a higher production of secretion in attines. Also, well-developed Golgi regions in the leaf-cutting ants and Ectatommini probably modify the secretions, produced by the secretory cell or coming of the hemolymph, into pheromone or antimicrobial compounds, the latter mainly in leaf-cutting ants. Still, the secretory cells of the metapleural gland of leaf-cutting ants exhibited several mitochondria near microvilli of the intracytoplasmic portion of the canaliculus, indicating an important role of the metapleural gland in the production and transport of secretion in metapleural gland of leaf-cutting ants. Thus, our work corroborates other findings, however our results add that the slight ultrastructural difference in the metapleural glands of leaf-cutting ants can be due to the feeding type (fungus-growing ants), resulting in greater secretory capacity and antimicrobial properties to combat pathogens (for example, micro-fungi parasites Escovopsis).


Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
EA Silva-Junior ◽  
CR Paludo ◽  
FS Nascimento ◽  
CR Currie ◽  
J Clardy ◽  
...  

2002 ◽  
Vol 159 (3) ◽  
pp. 283
Author(s):  
Burd ◽  
Archer ◽  
Aranwela ◽  
Stradling

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Sunshine A. Van Bael ◽  
Catalina Estrada ◽  
William T. Wcislo

Many organisms participate in symbiotic relationships with other organisms, yet studies of symbioses typically have focused on the reciprocal costs and benefits within a particular host-symbiont pair. Recent studies indicate that many ecological interactions involve alliances of symbionts acting together as mutualistic consortia against other consortia. Such interacting consortia are likely to be widespread in nature, even if the interactions often occur in a cryptic fashion. Little theory and empirical data exist concerning how these complex interactions shape ecological outcomes in nature. Here, we review recent work on fungal-fungal interactions between two consortia: (i) leaf-cutting ants and their symbiotic fungi (the latter grown as a food crop by the former) and (ii) tropical plants and their foliar endophytes (the cryptic symbiotic fungi within leaves of the former). Plant characteristics (e.g., secondary compounds or leaf physical properties of leaves) are involved in leaf-cutting ant preferences, and a synthesis of published information suggests that these plant traits could be modified by fungal presence. We discuss potential mechanisms for how fungal-fungal interactions proceed in the leaf-cutting ant agriculture and suggest themes for future research.


1979 ◽  
Vol 69 (1) ◽  
pp. 141-148 ◽  
Author(s):  
A. Mudd ◽  
G. L. Bateman

AbstractGrowth of the food fungus of the leaf-cutting ant Atta cephalotes (L.) on extracts of plants selected by the ants was shown to be affected by the plant species, the pH of the extract, the concentration of the sap or plant extract and pretreatment of the substrate by the ants. It was not possible to establish an unambiguous relationship between the rate of growth of the fungus on leaf extracts and the foraging preferences of the ants for the leaves. There were indications, however, that the fungus grows most rapidly on extracts of plant material preferred by A. cephalotes. Relative growth rates of the fungus on different substrates may be related to the presence of growth inhibitors rather than to nutrient availability.


Sign in / Sign up

Export Citation Format

Share Document