ecological interactions
Recently Published Documents


TOTAL DOCUMENTS

884
(FIVE YEARS 336)

H-INDEX

57
(FIVE YEARS 9)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Ussawit Srisakrapikoop ◽  
Tara J Pirie ◽  
Mark D E Fellowes

Abstract Urbanization can change interactions in insect communities, and the few studies of tritrophic interactions in urban settings focus on interactions between plants, herbivorous insects and their mutualists and natural enemies. Plant pathogen infection is also widespread and common, and infection may also alter such interactions, but we have no understanding of whether the ecological consequences of pathogen infection vary with urbanization. Using replicated aphid colonies on experimental plants, we investigated how infection by the plant pathogen Botrytis cinerea influences interactions between plants, aphids and the aphid natural enemies and ant mutualists in highly urbanized, suburban and rural study sites. Aphid and natural enemy abundance were highest in the suburban site, while mutualist ants were most abundant in the urban site, reversing the usual positive density-dependent relationship between natural enemies and aphids. The effect of pathogen infection varied with trait and site, mediated by natural enemy preference for hosts or prey on uninfected plants. The effect of infection on aphid abundance was only seen in the suburban site, where natural enemies were most abundant on uninfected plants and aphid numbers were greatest on infected plants. In the urban site, there was no effect of infection, while in the rural site, aphid numbers were lower on infected plants. Uninfected plants were smaller than infected plants and differed between locations. This study suggests that the effects of urbanization on ecological interactions may become more complex and difficult to predict as we study ecological assemblages and communities at greater levels of structural complexity.


2021 ◽  
Vol 4 ◽  
Author(s):  
Charles R. Clement ◽  
Carolina Levis ◽  
Joana Cabral de Oliveira ◽  
Carlos Fausto ◽  
Gilton Mendes dos Santos ◽  
...  

World conservation discourse concentrates on forests of high naturalness, which are variously termed intact forest landscapes, primary forests, pristine forests, and wilderness. In this essay, we bring Amazonian Indigenous perspectives to this discussion, both because Amazonian Indigenous Peoples have the right to be in the discussion and because they have a lot to teach us about naturalness. It is essential to understand that Indigenous ontologies do not distinguish culture from nature, since all beings, humans and non-humans, are part of a network of social-ecological interactions. Hence, forests are not natural, but the domus of different beings who inhabit, care for and cultivate them. Each part of the forest mosaic in different stages of social-ecological succession has different owners: when people open swiddens, they must respect other – non-human – forest residents to do so, and when they fallow their swiddens, these other forest residents reassume their original roles as managers and conservers of that part of the mosaic. Each stage of the succession also contains cultivated and domesticated plant populations, so we can think of a different kind of conservation: that of genetic resources. From this perspective, swidden-fallow represents on farm conservation, while less anthropogenic parts of the forest mosaic represent in situ conservation. We believe that reframing forest conservation and learning from Indigenous People can inspire innovative conservation science and policies.


Children ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 1191
Author(s):  
Talía Sainz ◽  
Valeria Pignataro ◽  
Donato Bonifazi ◽  
Simona Ravera ◽  
María José Mellado ◽  
...  

The evolving field of microbiome research offers an excellent opportunity for biomarker identification, understanding drug metabolization disparities, and improving personalized medicine. However, the complexities of host–microbe ecological interactions hinder clinical transferability. Among other factors, the microbiome is deeply influenced by age and social determinants of health, including environmental factors such as diet and lifestyle conditions. In this article, the bidirectionality of social and host–microorganism interactions in health will be discussed. While the field of microbiome-related personalized medicine evolves, it is clear that social determinants of health should be mitigated. Furthermore, microbiome research exemplifies the need for specific pediatric investigation plans to improve children’s health.


2021 ◽  
Author(s):  
Jorge Arroyo-Esqu ◽  
Alan Hastings ◽  
Marissa L. Baskett

Abstract Integrodifference equations are a discrete time spatially explicit model that describes dispersal of ecological populations through space. This framework is useful to study spread dynamics of organisms and how ecological interactions can affect their spread. When studying interactions such as consumption, dispersal rates might vary with life cycle stage, such as cases with dispersive juveniles and sessile adults. In the non-dispersive stage, resources may engage in group defense to protect themselves from consumption. These local nondispersive interactions may limit the number of dispersing recruits that are produced and therefore affect how fast populations can spread. We present a spatial consumer-resource system using an integrodifference framework with limited movement of their adult stages and group defense mechanisms in the resource population. We model group defense using a Type IV Holling functional response, which limits survival of adult resource population and enhances juvenile consumers production. We find that high mortality levels for sessile adults can destabilize resource at carrying capacity. Furthermore, we find that at high resource densities, group defense leads to a slower local growth of resource in newly invaded regions due to intraspecific competition outweighing the effect of consumption on resource growth.


Author(s):  
Ian Magalhaes Braga ◽  
Lucas Wardil

Abstract Ecological interactions are central to understanding evolution. For example, Darwin noticed that the beautiful colours of the male peacock increase the chance of successful mating. However, the colours can be a threat because of the increased probability of being caught by predators. Eco-evolutionary dynamics takes into account environmental interactions to model the process of evolution. The selection of prey types in the presence of predators may be subjected to pressure on both reproduction and survival. Here, we analyze the evolutionary game dynamics of two types of prey in the presence of predators. We call this model \textit{the predator-dependent replicator dynamics}. If the evolutionary time scales are different, the number of predators can be assumed constant, and the traditional replicator dynamics is recovered. However, if the time scales are the same, we end up with sixteen possible dynamics: the combinations of four reproduction’s games with four predation’s games. We analyze the dynamics and calculate conditions for the coexistence of prey and predator. The main result is that predators can change the equilibrium of the traditional replicator dynamics. For example, the presence of predators can induce polymorphism in prey if one type of prey is more attractive than the other, with the prey ending with a lower capture rate in this new equilibrium. Lastly, we provide two illustrations of the dynamics, which can be seen as rapid feedback responses in a predator-prey evolutionary arm’s race.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jakob Peder Pettersen ◽  
Madeleine S. Gundersen ◽  
Eivind Almaas

AbstractSelection for bacteria which are K-strategists instead of r-strategists has been shown to improve fish health and survival in aquaculture. We considered an experiment where microcosms were inoculated with natural seawater and the selection regime was switched from K-selection (by continuous feeding) to r-selection (by pulse feeding) and vice versa. We found the networks of significant co-occurrences to contain clusters of taxonomically related bacteria having positive associations. Comparing this with the time dynamics, we found that the clusters most likely were results of similar niche preferences of the involved bacteria. In particular, the distinction between r- or K-strategists was evident. Each selection regime seemed to give rise to a specific pattern, to which the community converges regardless of its prehistory. Furthermore, the results proved robust to parameter choices in the analysis, such as the filtering threshold, level of random noise, replacing absolute abundances with relative abundances, and the choice of similarity measure. Even though our data and approaches cannot directly predict ecological interactions, our approach provides insights on how the selection regime affects the composition of the microbial community, providing a basis for aquaculture experiments targeted at eliminating opportunistic fish pathogens.


2021 ◽  
Author(s):  
David Garcia-Callejas ◽  
Oscar Godoy ◽  
Lisa Buche ◽  
Maria Hurtado ◽  
Jose B. Lanuza ◽  
...  

Theory posits that the persistence of species in ecological communities is shaped by their interactions within and across trophic levels. However, we lack empirical evaluations of how the structure, strength and sign of these interactions drive the potential to coexist in diverse multi-trophic communities. Here we model community feasibility domains, a theoretically-informed measure of coexistence probability, from empirical data on communities comprising more than 50 species for three trophic guilds (plants, pollinators, and herbivores). Although feasibility domains vary depending on the number of trophic guilds considered, we show that higher network connectance leads to lower coexistence opportunities. Moreover, empirical estimations of the feasibility domains were higher with respect to random network structures but lower than a mean-field approach, suggesting that observed interaction structures tend to maximize coexistence within its imposed limits. Our results stress the importance of incorporating empirically-informed interaction structures within and across guilds to better understand how species coexist in diverse multi-trophic communities.


Author(s):  
Claudia Igler ◽  
Jana S. Huisman ◽  
Berit Siedentop ◽  
Sebastian Bonhoeffer ◽  
Sonja Lehtinen

As infectious agents of bacteria and vehicles of horizontal gene transfer, plasmids play a key role in bacterial ecology and evolution. Plasmid dynamics are shaped not only by plasmid–host interactions but also by ecological interactions between plasmid variants. These interactions are complex: plasmids can co-infect the same cell and the consequences for the co-resident plasmid can be either beneficial or detrimental. Many of the biological processes that govern plasmid co-infection—from systems that exclude infection by other plasmids to interactions in the regulation of plasmid copy number—are well characterized at a mechanistic level. Modelling plays a central role in translating such mechanistic insights into predictions about plasmid dynamics and the impact of these dynamics on bacterial evolution. Theoretical work in evolutionary epidemiology has shown that formulating models of co-infection is not trivial, as some modelling choices can introduce unintended ecological assumptions. Here, we review how the biological processes that govern co-infection can be represented in a mathematical model, discuss potential modelling pitfalls, and analyse this model to provide general insights into how co-infection impacts ecological and evolutionary outcomes. In particular, we demonstrate how beneficial and detrimental effects of co-infection give rise to frequency-dependent selection on plasmid variants. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ina Maria Deutschmann ◽  
Gipsi Lima-Mendez ◽  
Anders K. Krabberød ◽  
Jeroen Raes ◽  
Sergio M. Vallina ◽  
...  

Abstract Background Ecological interactions among microorganisms are fundamental for ecosystem function, yet they are mostly unknown or poorly understood. High-throughput-omics can indicate microbial interactions through associations across time and space, which can be represented as association networks. Associations could result from either ecological interactions between microorganisms, or from environmental selection, where the association is environmentally driven. Therefore, before downstream analysis and interpretation, we need to distinguish the nature of the association, particularly if it is due to environmental selection or not. Results We present EnDED (environmentally driven edge detection), an implementation of four approaches as well as their combination to predict which links between microorganisms in an association network are environmentally driven. The four approaches are sign pattern, overlap, interaction information, and data processing inequality. We tested EnDED on networks from simulated data of 50 microorganisms. The networks contained on average 50 nodes and 1087 edges, of which 60 were true interactions but 1026 false associations (i.e., environmentally driven or due to chance). Applying each method individually, we detected a moderate to high number of environmentally driven edges—87% sign pattern and overlap, 67% interaction information, and 44% data processing inequality. Combining these methods in an intersection approach resulted in retaining more interactions, both true and false (32% of environmentally driven associations). After validation with the simulated datasets, we applied EnDED on a marine microbial network inferred from 10 years of monthly observations of microbial-plankton abundance. The intersection combination predicted that 8.3% of the associations were environmentally driven, while individual methods predicted 24.8% (data processing inequality), 25.7% (interaction information), and up to 84.6% (sign pattern as well as overlap). The fraction of environmentally driven edges among negative microbial associations in the real network increased rapidly with the number of environmental factors. Conclusions To reach accurate hypotheses about ecological interactions, it is important to determine, quantify, and remove environmentally driven associations in marine microbial association networks. For that, EnDED offers up to four individual methods as well as their combination. However, especially for the intersection combination, we suggest using EnDED with other strategies to reduce the number of false associations and consequently the number of potential interaction hypotheses.


Sign in / Sign up

Export Citation Format

Share Document