Simulation of single slip in FCC metals

2006 ◽  
Vol 49 (1) ◽  
pp. 62-73 ◽  
Author(s):  
L. E. Popov ◽  
M. I. Slobodskoi ◽  
S. N. Kolupaeva
Keyword(s):  
1990 ◽  
Vol 51 (C1) ◽  
pp. C1-311-C1-316 ◽  
Author(s):  
B. J. PESTMAN ◽  
J. Th. M. DE HOSSON ◽  
V. VITEK ◽  
F. W. SCHAPINK
Keyword(s):  

1983 ◽  
Vol 11 (4) ◽  
pp. 239-250 ◽  
Author(s):  
Tung Hsu ◽  
J.M. Cowley

2021 ◽  
Vol 103 (9) ◽  
Author(s):  
Zachary H. Aitken ◽  
Viacheslav Sorkin ◽  
Zhi Gen Yu ◽  
Shuai Chen ◽  
Zhaoxuan Wu ◽  
...  

2007 ◽  
Vol 558-559 ◽  
pp. 575-580 ◽  
Author(s):  
Werner Skrotzki ◽  
Burghardt Klöden ◽  
I. Hünsche ◽  
Robert Chulist ◽  
Satyam Suwas ◽  
...  

3N nickel has been deformed by equal channel angular pressing (ECAP) at 400°C up to 3 passes using route A. The texture with respect to position in the deformed billet, i.e. from top to bottom, has been measured with high-energy synchrotron radiation. It is characterized by texture components typical for simple shear in the intersection plane of the square-shaped 90° bent channel. Besides, an oblique cube component is observed. Orientation imaging microscopy clearly shows that this component is due to partial recrystallization. Intensities of the texture components as well as deviations from their ideal shear positions vary from the top to the bottom of the billet and with the number of passes. The change of the intensity of texture components and the texture gradient investigated is discussed. Special emphasis is put on the influence of dynamic recrystallization on texture and microstructure formation during ECAP of fcc metals.


2008 ◽  
Vol 32 ◽  
pp. 255-258
Author(s):  
Bohayra Mortazavi ◽  
Akbar Afaghi Khatibi

Molecular Dynamics (MD) are now having orthodox means for simulation of matter in nano-scale. It can be regarded as an accurate alternative for experimental work in nano-science. In this paper, Molecular Dynamics simulation of uniaxial tension of some face centered cubic (FCC) metals (namely Au, Ag, Cu and Ni) at nano-level have been carried out. Sutton-Chen potential functions and velocity Verlet formulation of Noise-Hoover dynamic as well as periodic boundary conditions were applied. MD simulations at different loading rates and temperatures were conducted, and it was concluded that by increasing the temperature, maximum engineering stress decreases while engineering strain at failure is increasing. On the other hand, by increasing the loading rate both maximum engineering stress and strain at failure are increasing.


Sign in / Sign up

Export Citation Format

Share Document