On New Formulas for the Cumulative Distribution Function of the Noncentral Chi-Square Distribution

Author(s):  
Dragana Jankov Maširević
Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 129
Author(s):  
Árpád Baricz ◽  
Dragana Jankov Maširević ◽  
Tibor K. Pogány

The cumulative distribution function of the non-central chi-square distribution χn′2(λ) of n degrees of freedom possesses an integral representation. Here we rewrite this integral in terms of a lower incomplete gamma function applying two of the second mean-value theorems for definite integrals, which are of Bonnet type and Okamura’s variant of the du Bois–Reymond theorem. Related results are exposed concerning the small argument cases in cumulative distribution function (CDF) and their asymptotic behavior near the origin.


Author(s):  
Pooja Singh

Exponential functions have been extended to Hypergeometric functions. There are many functions which can be expressed in hypergeometric function by using its analytic properties. In this paper, we will apply a unified approach to the probability density function and corresponding cumulative distribution function of the noncentral chi square variate to extract and derive hypergeometric functions.


Author(s):  
RONALD R. YAGER

We look at the issue of obtaining a variance like measure associated with probability distributions over ordinal sets. We call these dissonance measures. We specify some general properties desired in these dissonance measures. The centrality of the cumulative distribution function in formulating the concept of dissonance is pointed out. We introduce some specific examples of measures of dissonance.


2017 ◽  
Vol 20 (5) ◽  
pp. 939-951
Author(s):  
Amal Almarwani ◽  
Bashair Aljohani ◽  
Rasha Almutairi ◽  
Nada Albalawi ◽  
Alya O. Al Mutairi

Sign in / Sign up

Export Citation Format

Share Document