scholarly journals Gradual transitivity in orthogonality spaces of finite rank

Author(s):  
Thomas Vetterlein

Abstract An orthogonality space is a set together with a symmetric and irreflexive binary relation. Any linear space equipped with a reflexive and anisotropic inner product provides an example: the set of one-dimensional subspaces together with the usual orthogonality relation is an orthogonality space. We present simple conditions to characterise the orthogonality spaces that arise in this way from finite-dimensional Hermitian spaces. Moreover, we investigate the consequences of the hypothesis that an orthogonality space allows gradual transitions between any pair of its elements. More precisely, given elements e and f, we require a homomorphism from a divisible subgroup of the circle group to the automorphism group of the orthogonality space to exist such that one of the automorphisms maps e to f, and any of the automorphisms leaves the elements orthogonal to e and f fixed. We show that our hypothesis leads us to positive definite quadratic spaces. By adding a certain simplicity condition, we furthermore find that the field of scalars is Archimedean and hence a subfield of the reals.

2019 ◽  
Vol 16 (05) ◽  
pp. 1950080 ◽  
Author(s):  
Thomas Vetterlein

An orthogonality space is a set endowed with a symmetric, irreflexive binary relation. By means of the usual orthogonality relation, each anisotropic quadratic space gives rise to such a structure. We investigate in this paper the question to which extent this strong abstraction suffices to characterize complex Hilbert spaces, which play a central role in quantum physics. To this end, we consider postulates concerning the nature and existence of symmetries. Together with a further postulate excluding the existence of nontrivial quotients, we establish a representation theorem for finite-dimensional orthomodular spaces over a dense subfield of [Formula: see text].


Author(s):  
K. V. Bhagwat ◽  
R. Subramanian

One of the most fruitful – and natural – ways of introducing a partial order in the set of bounded self-adjoint operators in a Hilbert space is through the concept of a positive operator. A bounded self-adjoint operator A denned on is called positive – and one writes A ≥ 0 - if the inner product (ψ, Aψ) ≥ 0 for every ψ ∈ . If, in addition, (ψ, Aψ) = 0 only if ψ = 0, then A is called positive-definite and one writes A > 0. Further, if there exists a real number γ > 0 such that A — γI ≥ 0, I being the unit operator, then A is called strictly positive (in symbols, A ≫ 0). In a finite dimensional space, a positive-definite operator is also strictly positive.


2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Leslie Leben ◽  
Francisco Martínez Pería ◽  
Friedrich Philipp ◽  
Carsten Trunk ◽  
Henrik Winkler

AbstractWe elaborate on the deviation of the Jordan structures of two linear relations that are finite-dimensional perturbations of each other. We compare their number of Jordan chains of length at least n. In the operator case, it was recently proved that the difference of these numbers is independent of n and is at most the defect between the operators. One of the main results of this paper shows that in the case of linear relations this number has to be multiplied by $$n+1$$ n + 1 and that this bound is sharp. The reason for this behavior is the existence of singular chains. We apply our results to one-dimensional perturbations of singular and regular matrix pencils. This is done by representing matrix pencils via linear relations. This technique allows for both proving known results for regular pencils as well as new results for singular ones.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Carlos A. M. André ◽  
João Dias

Abstract We consider smooth representations of the unit group G = A × G=\mathcal{A}^{\times} of a finite-dimensional split basic algebra 𝒜 over a non-Archimedean local field. In particular, we prove a version of Gutkin’s conjecture, namely, we prove that every irreducible smooth representation of 𝐺 is compactly induced by a one-dimensional representation of the unit group of some subalgebra of 𝒜. We also discuss admissibility and unitarisability of smooth representations of 𝐺.


Author(s):  
Rosa Winter ◽  
Ronald van Luijk

AbstractLet $$\varGamma $$ Γ be the graph on the roots of the $$E_8$$ E 8 root system, where any two distinct vertices e and f are connected by an edge with color equal to the inner product of e and f. For any set c of colors, let $$\varGamma _c$$ Γ c be the subgraph of $$\varGamma $$ Γ consisting of all the 240 vertices, and all the edges whose color lies in c. We consider cliques, i.e., complete subgraphs, of $$\varGamma $$ Γ that are either monochromatic, or of size at most 3, or a maximal clique in $$\varGamma _c$$ Γ c for some color set c, or whose vertices are the vertices of a face of the $$E_8$$ E 8 root polytope. We prove that, apart from two exceptions, two such cliques are conjugate under the automorphism group of $$\varGamma $$ Γ if and only if they are isomorphic as colored graphs. Moreover, for an isomorphism f from one such clique K to another, we give necessary and sufficient conditions for f to extend to an automorphism of $$\varGamma $$ Γ , in terms of the restrictions of f to certain special subgraphs of K of size at most 7.


1994 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
D. Ž. Doković ◽  
P. Check ◽  
J.-Y. Hée

AbstractLet R be a root system (in the sense of Bourbaki) in a finite dimensional real inner product space V. A subset P ⊂ R is closed if α, β ∊ P and α + β ∊ R imply that α + β ∊ P. In this paper we shall classify, up to conjugacy by the Weyl group W of R, all closed sets P ⊂ R such that R\P is also closed. We also show that if θ:R —> R′ is a bijection between two root systems such that both θ and θ-1 preserve closed sets, and if R has at most one irreducible component of type A1, then θ is an isomorphism of root systems.


2011 ◽  
Vol 54 (4) ◽  
pp. 726-738
Author(s):  
M. I. Ostrovskii

AbstractLet BY denote the unit ball of a normed linear space Y. A symmetric, bounded, closed, convex set A in a finite dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y, there exists a linear projection P: Y → X such that P(BY ) ⊂ A. Each finite dimensional normed space has a minimal-volume sufficient enlargement that is a parallelepiped; some spaces have “exotic” minimal-volume sufficient enlargements. The main result of the paper is a characterization of spaces having “exotic” minimal-volume sufficient enlargements in terms of Auerbach bases.


2007 ◽  
Vol 17 (03) ◽  
pp. 527-555 ◽  
Author(s):  
YOU'AN CAO ◽  
DEZHI JIANG ◽  
JUNYING WANG

Let L be a finite-dimensional complex simple Lie algebra, Lℤ be the ℤ-span of a Chevalley basis of L and LR = R⊗ℤLℤ be a Chevalley algebra of type L over a commutative ring R. Let [Formula: see text] be the nilpotent subalgebra of LR spanned by the root vectors associated with positive roots. The aim of this paper is to determine the automorphism group of [Formula: see text].


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
J. D. Audu ◽  
A. Boumenir ◽  
K. M. Furati ◽  
I. O. Sarumi

<p style='text-indent:20px;'>In this paper we examine the identification problem of the heat sink for a one dimensional heat equation through observations of the solution at the boundary or through a desired temperature profile to be attained at a certain given time. We make use of pseudo-spectral methods to recast the direct as well as the inverse problem in terms of linear systems in matrix form. The resulting evolution equations in finite dimensional spaces leads to fast real time algorithms which are crucial to applied control theory.</p>


Sign in / Sign up

Export Citation Format

Share Document