The extension problem for fractional Sobolev spaces with a partial vanishing trace condition
AbstractWe construct whole-space extensions of functions in a fractional Sobolev space of order $$s\in (0,1)$$ s ∈ ( 0 , 1 ) and integrability $$p\in (0,\infty )$$ p ∈ ( 0 , ∞ ) on an open set O which vanish in a suitable sense on a portion D of the boundary $${{\,\mathrm{\partial \!}\,}}O$$ ∂ O of O. The set O is supposed to satisfy the so-called interior thickness condition in$${{\,\mathrm{\partial \!}\,}}O {\setminus } D$$ ∂ O \ D , which is much weaker than the global interior thickness condition. The proof works by means of a reduction to the case $$D=\emptyset $$ D = ∅ using a geometric construction.