Nonexistence of solutions to singular Q-curvature equations

Author(s):  
Yamin Wang
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abderrazak Nabti ◽  
Ahmed Alsaedi ◽  
Mokhtar Kirane ◽  
Bashir Ahmad

Abstract We prove the nonexistence of solutions of the fractional diffusion equation with time-space nonlocal source $$\begin{aligned} u_{t} + (-\Delta )^{\frac{\beta }{2}} u =\bigl(1+ \vert x \vert \bigr)^{ \gamma } \int _{0}^{t} (t-s)^{\alpha -1} \vert u \vert ^{p} \bigl\Vert \nu ^{ \frac{1}{q}}(x) u \bigr\Vert _{q}^{r} \,ds \end{aligned}$$ u t + ( − Δ ) β 2 u = ( 1 + | x | ) γ ∫ 0 t ( t − s ) α − 1 | u | p ∥ ν 1 q ( x ) u ∥ q r d s for $(x,t) \in \mathbb{R}^{N}\times (0,\infty )$ ( x , t ) ∈ R N × ( 0 , ∞ ) with initial data $u(x,0)=u_{0}(x) \in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})$ u ( x , 0 ) = u 0 ( x ) ∈ L loc 1 ( R N ) , where $p,q,r>1$ p , q , r > 1 , $q(p+r)>q+r$ q ( p + r ) > q + r , $0<\gamma \leq 2 $ 0 < γ ≤ 2 , $0<\alpha <1$ 0 < α < 1 , $0<\beta \leq 2$ 0 < β ≤ 2 , $(-\Delta )^{\frac{\beta }{2}}$ ( − Δ ) β 2 stands for the fractional Laplacian operator of order β, the weight function $\nu (x)$ ν ( x ) is positive and singular at the origin, and $\Vert \cdot \Vert _{q}$ ∥ ⋅ ∥ q is the norm of $L^{q}$ L q space.


2006 ◽  
Vol 2006 ◽  
pp. 1-14 ◽  
Author(s):  
M. C. Leseduarte ◽  
R. Quintanilla

This paper is devoted to the study of the elasticity with porous dissipation. In the context of the nonlinear problem, we prove instability and nonexistence of solutions. In the context of the linear problem, we obtain exponential growth. We also obtain uniqueness of solutions of the backward in time problem of the linear equations.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yuxuan Chen ◽  
Jiangbo Han

<p style='text-indent:20px;'>In this paper, we consider a class of finitely degenerate coupled parabolic systems. At high initial energy level <inline-formula><tex-math id="M1">\begin{document}$ J(u_{0})&gt;d $\end{document}</tex-math></inline-formula>, we present a new sufficient condition to describe the global existence and nonexistence of solutions for problem (1)-(4) respectively. Moreover, by applying the Levine's concavity method, we give some affirmative answers to finite time blow up of solutions at arbitrary positive initial energy <inline-formula><tex-math id="M2">\begin{document}$ J(u_{0})&gt;0 $\end{document}</tex-math></inline-formula>, including the estimate of upper bound of blowup time.</p>


Sign in / Sign up

Export Citation Format

Share Document