scholarly journals Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps

2000 ◽  
Vol 75 (4) ◽  
pp. 535-593 ◽  
Author(s):  
C. T. McMullen
2011 ◽  
Vol 21 (11) ◽  
pp. 3323-3339
Author(s):  
RIKA HAGIHARA ◽  
JANE HAWKINS

We study a family of rational maps of the Riemann sphere with the property that each map has two fixed points with multiplier -1; moreover, each map has no period 2 orbits. The family we analyze is Ra(z) = (z3 - z)/(-z2 + az + 1), where a varies over all nonzero complex numbers. We discuss many dynamical properties of Ra including bifurcations of critical orbit behavior as a varies, connectivity of the Julia set J(Ra), and we give estimates on the Hausdorff dimension of J(Ra).


2002 ◽  
Vol 91 (1) ◽  
pp. 27 ◽  
Author(s):  
B. O. Stratmann ◽  
M. Urbański

In this paper we derive a Diophantine analysis for Julia sets of parabolic rational maps. We generalise two theorems of Dirichlet and Jarník in number theory to the theory of iterations of these maps. On the basis of these results, we then derive a "weak multifractal analysis" of the conformal measure naturally associated with a parabolic rational map. The results in this paper contribute to a further development of Sullivan's famous dictionary translating between the theory of Kleinian groups and the theory of rational maps.


Author(s):  
Yunping Jiang

This chapter reviews the characterization of geometrically finite rational maps and then outlines a framework for characterizing holomorphic maps. Whereas Thurston's methods are based on estimates of hyperbolic distortion in hyperbolic geometry, the framework suggested here is based on controlling conformal distortion in spherical geometry. The new framework enables one to relax two of Thurston's assumptions: first, that the iterated map has finite degree and, second, that its post-critical set is finite. Thus, it makes possible to characterize certain rational maps for which the post-critical set is not finite as well as certain classes of entire and meromorphic coverings for which the iterated map has infinite degree.


1992 ◽  
Vol 12 (1) ◽  
pp. 53-66 ◽  
Author(s):  
M. Denker ◽  
M. Urbański

AbstractLet h denote the Hausdorff dimension of the Julia set J(T) of a parabolic rational map T. In this paper we prove that (after normalisation) the h-conformal measure on J(T) equals the h-dimensional Hausdorff measure Hh on J(T), if h ≥ 1, and equals the h-dimensional packing measure Πh on J(T), if h ≤ 1. Moreover, if h < 1, then Hh = 0 and, if h > 1, then Πh(J(T)) = ∞.


1993 ◽  
Vol 13 (1) ◽  
pp. 167-174 ◽  
Author(s):  
T. J. Ransford

AbstractLet (Rλ)λ∈D be an analytic family of rational maps of degree d ≥ 2, where D is a simply connected domain in ℂ, and each Rλ is hyperbolic. Then the Hausdorff dimension δ(λ) of the Julia set of Rλ satisfieswhere ℋ is a collection of harmonic functions u on D. We examine some consequences of this, and show how it can be used to obtain estimates for the Hausdorff dimension of some particular Julia sets.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yan Gao ◽  
Luxian Yang ◽  
Jinsong Zeng

<p style='text-indent:20px;'>In this paper, we prove that every quasiconformal deformation of a subhyperbolic rational map on the boundary of a hyperbolic component <inline-formula><tex-math id="M1">\begin{document}$ \mathcal{H} $\end{document}</tex-math></inline-formula> still lies on <inline-formula><tex-math id="M2">\begin{document}$ \partial \mathcal{H} $\end{document}</tex-math></inline-formula>. As an application, we construct geometrically finite rational maps with buried critical points on the boundaries of some hyperbolic components.</p>


2000 ◽  
Vol 20 (1) ◽  
pp. 145-172 ◽  
Author(s):  
SHMUEL FRIEDLAND

We study certain metrics on subshifts of finite type for which we define the discrete analogs of Lyapunov exponents. We prove Young's formula for $\mu$-Hausdorff dimension. We give sufficient conditions on the above metrics for which the Hausdorff dimension is given by thermodynamic formalism. We apply these results to the Hausdorff dimension of the limit sets of geometrically finite, purely loxodromic, Kleinian groups.


Sign in / Sign up

Export Citation Format

Share Document