scholarly journals Generalized Schur–Nevanlinna functions and their realizations

2020 ◽  
Vol 92 (5) ◽  
Author(s):  
Lassi Lilleberg

Abstract Pontryagin space operator valued generalized Schur functions and generalized Nevanlinna functions are investigated by using discrete-time systems, or operator colligations, and state space realizations. It is shown that generalized Schur functions have strong radial limit values almost everywhere on the unit circle. These limit values are contractive with respect to the indefinite inner product, which allows one to generalize the notion of an inner function to Pontryagin space operator valued setting. Transfer functions of self-adjoint systems such that their state spaces are Pontryagin spaces, are generalized Nevanlinna functions, and symmetric generalized Schur functions can be realized as transfer functions of self-adjoint systems with Kreĭn spaces as state spaces. A criterion when a symmetric generalized Schur function is also a generalized Nevanlinna function is given. The criterion involves the negative index of the weak similarity mapping between an optimal minimal realization and its dual. In the special case corresponding to the generalization of an inner function, a concrete model for the weak similarity mapping can be obtained by using the canonical realizations.

2012 ◽  
Vol 93 (3) ◽  
pp. 203-224
Author(s):  
VLADIMIR BOLOTNIKOV ◽  
TENGYAO WANG ◽  
JOSHUA M. WEISS

AbstractCharacterization of generalized Schur functions in terms of their Taylor coefficients was established by Krein and Langer [‘Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume ${\Pi }_{\kappa } $ zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen’, Math. Nachr. 77 (1977), 187–236]. We establish a boundary analogue of this characterization.


Author(s):  
Chin An Tan ◽  
Heather L. Lai

Extensive research has been conducted on vibration energy harvesting utilizing a distributed piezoelectric beam structure. A fundamental issue in the design of these harvesters is the understanding of the response of the beam to arbitrary external excitations (boundary excitations in most models). The modal analysis method has been the primary tool for evaluating the system response. However, a change in the model boundary conditions requires a reevaluation of the eigenfunctions in the series and information of higher-order dynamics may be lost in the truncation. In this paper, a frequency domain modeling approach based in the system transfer functions is proposed. The transfer function of a distributed parameter system contains all of the information required to predict the system spectrum, the system response under any initial and external disturbances, and the stability of the system response. The methodology proposed in this paper is valid for both self-adjoint and non-self-adjoint systems, and is useful for numerical computer coding and energy harvester design investigations. Examples will be discussed to demonstrate the effectiveness of this approach for designs of vibration energy harvesters.


2006 ◽  
Vol 56 (3) ◽  
pp. 323-355 ◽  
Author(s):  
Vladimir Bolotnikov ◽  
Alexander Kheifets

1992 ◽  
Vol 59 (4) ◽  
pp. 1009-1014 ◽  
Author(s):  
B. Yang ◽  
C. A. Tan

Distributed parameter systems describe many important physical processes. The transfer function of a distributed parameter system contains all information required to predict the system spectrum, the system response under any initial and external disturbances, and the stability of the system response. This paper presents a new method for evaluating transfer functions for a class of one-dimensional distributed parameter systems. The system equations are cast into a matrix form in the Laplace transform domain. Through determination of a fundamental matrix, the system transfer function is precisely evaluated in closed form. The method proposed is valid for both self-adjoint and non-self-adjoint systems, and is extremely convenient in computer coding. The method is applied to a damped, axially moving beam with different boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document