Volume 1: 22nd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
Latest Publications


TOTAL DOCUMENTS

175
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By ASMEDC

9780791848982

Author(s):  
Chin An Tan ◽  
Heather L. Lai

Extensive research has been conducted on vibration energy harvesting utilizing a distributed piezoelectric beam structure. A fundamental issue in the design of these harvesters is the understanding of the response of the beam to arbitrary external excitations (boundary excitations in most models). The modal analysis method has been the primary tool for evaluating the system response. However, a change in the model boundary conditions requires a reevaluation of the eigenfunctions in the series and information of higher-order dynamics may be lost in the truncation. In this paper, a frequency domain modeling approach based in the system transfer functions is proposed. The transfer function of a distributed parameter system contains all of the information required to predict the system spectrum, the system response under any initial and external disturbances, and the stability of the system response. The methodology proposed in this paper is valid for both self-adjoint and non-self-adjoint systems, and is useful for numerical computer coding and energy harvester design investigations. Examples will be discussed to demonstrate the effectiveness of this approach for designs of vibration energy harvesters.


Author(s):  
S. H. Upadhyay ◽  
S. C. Jain ◽  
S. P. Harsha

In this paper, the nonlinear dynamic behavior of ball bearings due to radial internal clearance and rotor speed has been analyzed. The approach presented in this paper accounts for the contact between rolling elements and inner/outer races. The equations of motion of a ball bearing are formulated in generalized coordinates, using Lagrange’s equation considering the vibration characteristics of the individual constitute such as inner race, outer race, rolling elements. The effects of speed of rotor in which rolling element bearings shows periodic, quasi-periodic and chaotic behavior are analyzed. The results also show the intermittent chaotic behavior in the dynamic response is seen to be strongly dependent on the speed of the rotor. The results are obtained in the form of frequency responses. The validity of the proposed model verified by comparison of frequency components of the system response with those obtained from experiments. The peak-to-peak frequency response of the system for each speed is obtained. The current study provides a powerful tool design and health monitoring of machine systems.


Author(s):  
Hamed Moradi ◽  
Firooz Bakhtiari-Nejad ◽  
Mohammad R. Movahhedi

Dynamic vibration absorbers are used as semi-active controllers to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges and etc. One type of these absorbers is tunable vibration absorber (TVA). In this paper, regenerative chatter in an orthogonal turning process is suppressed using a (TVA). It is shown that TVA can modify the frequency response function of the cutting tool so as to improve cutting stability in turning process. In addition, tool wear is an important factor which works as a positive damping and helps the chatter suppression beside exertion of the TVA. Finally, using the SIMULINK Toolbox of MATLAB, the analog simulated block diagram of the problem is developed. The advantage of this simulation is that, one can analyze the effect of other types of excitations such as step, ramp, etc on the absorbed system.


Author(s):  
Min-Chie Chiu

Research on new techniques of single-chamber plug-inlet mufflers has been addressed. However, research work on shape optimization of multi-chamber plug-inlet mufflers along with work on the maximal back pressure has been neglected. Therefore, a numerical case for eliminating a broadband steam blow-off noise using multi-chamber plug-inlet mufflers in conjunction with genetic algorithm (GA) as well as numerical decoupling technique under space-constrained pressure drop is introduced in this paper. To verify the liability of GA optimization, optimal noise abatements for various pure tones on a one-chamber plug-inlet muffler are exemplified. Also, the accuracy of the mathematical model has to be checked by experimental data. Results indicate that the maximal sound transmission losses are precisely located at the desired target tones. Consequently, both the pressure drop and the acoustical performance will be increased when the diameters (at inlet tubes and perforated holes), the perforated ratio, and the length of perforated tube decrease.


Author(s):  
C. X. Lu ◽  
C. C. Wang ◽  
C. K. Sung ◽  
Paul C. P. Chao

Hula-hoop motion refers to the spinning of a ring around a human body; it is made possible by the interactive force between the moving ring and the body. Inspired by the generic concept of hula-hoop motion, this study proposes a novel motion transformer design that consists of a main mass sprung in one translational direction and a free-moving mass attached at one end of a rod, the other end of which is hinged onto the center of the main mass. It is expected that the transformer is capable of transforming linear reciprocating motion into rotational motion. In addition, the transformer could be integrated with coils, magnets, and electric circuits to form a portable energy scavenging device. A thorough dynamic analysis of the proposed transformer system is conducted in this study in order to characterize the relationships between the varied system parameters and the chance of hula-hoop motion occurrence. The governing equations are first derived by using Lagrange’s Method, which is followed by the search for steady-state solutions and the corresponding stability analysis via the homotopy perturbation method and Floquet theory. Direct numerical simulation is simultaneously performed to verify the correctness of the approximate analysis. In this manner, the feasibility of the proposed design and the occurrence criteria of hula-hoop motion are assessed.


Author(s):  
Fadi A. Ghaith

In the present work, a Bernoulli – Euler beam fixed on a moving cart and carrying lumped tip mass subjected to external periodic force is considered. Such a model could describe the motion of structures like forklift vehicles or ladder cars that carry heavy loads and military airplane wings with storage loads on their span. The nonlinear equations of motion which describe the global motion as well as the vibration motion were derived using Lagrangian approach under the inextensibility condition. In order to investigate the influence of the axial movement of the cart on the response of the system, unconstrained modal analysis has been carried out, and accurate mode shapes of the beam deflection were obtained. The assumed mode method was utilized for approximating the beam elastic deformation based on the single unconstrained mode shapes. Numerical simulation has been carried out to estimate the open-loop response of the nonlinear beam-mass-cart model as well as for the simplified linear model under the influence of the periodic excitation force. Also a comparison study between the responses of the linear and nonlinear models was established. It was shown that the maximum values of the beam tip deflection estimated from the nonlinear model are lower than the corresponding values obtained via the linear model, which reveals the importance of considering nonlinear hardening term in formulating the equations of motion for such system in order to come with more accurate and reliable model.


Author(s):  
George Valsamos ◽  
Christos Theodosiou ◽  
Sotirios Natsiavas

Dynamic response related to fatigue prediction of an urban bus is investigated. First, a quite complete model subjected to road excitation is employed in order to extract sufficiently reliable and accurate information in a fast way. The bus model is set up by applying the finite element method, resulting to an excessive number of degrees of freedom. In addition, the bus suspension units involve nonlinear characterstics. A step towards alleviating this difficulty is the application of an appropriate coordinate transformation, causing a drastic reduction in the dimension of the final set of the equations of motion. This allows the application of a systematic numerical methodology leading to direct determination of periodic steady state response of nonlinear models subjected to periodic excitation. Next, typical results were obtained for excitation resulting from selected urban road profiles. These profiles have either a known form or known statistical properties, expressed by an appropriate spatial power spectral density function. In all cases examined, the emphasis was put on investigating ride response. The main attention was focused on identifying areas of the bus suspension and frame subsystems where high stress levels are developed. This information is based on the idea of a nonlinear transfer function and provides the basis for applying suitable criteria in order to perform analyses leading to prediction of fatigue failure.


Author(s):  
Raj K. Narisetti ◽  
Massimo Ruzzene ◽  
Michael J. Leamy

This paper investigates wave propagation in two-dimensional nonlinear periodic structures subject to point harmonic forcing. The infinite lattice is modeled as a springmass system consisting of linear and cubic-nonlinear stiffness. The effects of nonlinearity on harmonic wave propagation are analytically predicted using a novel perturbation approach. Response is characterized by group velocity contours (derived from phase-constant contours) functionally dependent on excitation amplitude and the nonlinear stiffness coefficients. Within the pass band there is a frequency band termed the “caustic band” where the response is characterized by the appearance of low amplitude regions or “dead zones.” For a two-dimensional lattice having asymmetric nonlinearity, it is shown that these caustic bands are dependent on the excitation amplitude, unlike in corresponding linear models. The analytical predictions obtained are verified via comparisons to responses generated using a time-domain simulation of a finite two-dimensional nonlinear lattice. Lastly, the study demonstrates amplitude-dependent wave beaming in two-dimensional nonlinear periodic structures.


Author(s):  
Mohammed F. Daqaq

Driven by the study of Leland and Wright [1], this manuscript delves into the qualitative understanding of energy harvesting using axially-loaded beams. Using a simple nonlinear electromechanical model and the method of multiple scales, we study the general nonlinear physics of energy harvesting from a piezoelectric beam subjected to static axial loading and traversal dynamic excitation. We obtain analytical expressions for the steady-state response amplitude, the voltage drop across a resistive load, and the output power. We utilize these expression to study the effect of the axial loading on the overall nonlinear behavior of the harvester. It is demonstrated that, in addition to the ability of tuning the harvester to the excitation frequency via axial load variations, the axial load aids in i) increasing the electric damping in the system thereby enhancing the energy transfer from the beam to the electric load, ii) amplifying the effect of the external excitation on the structure, and hence, increases the steady-state response amplitude and output voltage, and iii) increasing the bandwidth of the harvester by enhancing the effective nonlinearity of the system.


Author(s):  
P. K. Kankar ◽  
Satish C. Sharma ◽  
S. P. Harsha

The vibration response of a rotor bearing system is extremely important in industries and is challenged by their highly non-linear and complex properties. This paper focuses on performance prediction using response surface method (RSM), which is essential to the design of high performance rotor bearing system. Response surface method is utilized to analysis the effects of design and operating parameters on the vibration response of a rotor-bearing system. A test rig of high speed rotor supported on rolling bearings is used. Vibration response of the healthy ball bearing and ball bearings with various faults are obtained and analyzed. Distributed defects are considered as surface waviness of the bearing components. Effects of internal radial clearance and surface waviness of the bearing components and their interaction are analyzed using design of experiment (DOE) and RSM.


Sign in / Sign up

Export Citation Format

Share Document