scholarly journals On Stability of Blow-Up Solutions of the Burgers Vortex Type for the Navier–Stokes Equations with a Linear Strain

2019 ◽  
Vol 21 (4) ◽  
Author(s):  
Yasunori Maekawa ◽  
Hideyuki Miura ◽  
Christophe Prange
2000 ◽  
Vol 409 ◽  
pp. 51-68 ◽  
Author(s):  
H. K. MOFFATT

The interaction of two propagating vortex pairs is considered, each pair being initially aligned along the positive principal axis of strain associated with the other. As a preliminary, the action of accelerating strain on a Burgers vortex is considered and the conditions for a finite-time singularity (or ‘blow-up’) are determined. The asymptotic high Reynolds number behaviour of such a vortex under non-axisymmetric strain, and the corresponding behaviour of a vortex pair, are described. This leads naturally to consideration of the interaction of the two vortex pairs, and identifies a mechanism by which blow-up may occur through self-similar evolution in an interaction zone where scale decreases in proportion to (t* − t)1/2, where t* is the singularity time. The relevance of Leray scaling in this interaction zone is discussed.


1991 ◽  
Vol 227 ◽  
pp. 211-244 ◽  
Author(s):  
E. Meiburg ◽  
P. K. Newton

We study the mixing of fluid in a viscously decaying row of point vortices. To this end, we employ a simplified model based on Stuart's (1967) one-parameter family of solutions to the steady Euler equations. Our approach relates the free parameter to a vortex core size, which grows in time according to the exact solution of the Navier-Stokes equations for an isolated vortex. In this way, we approach an exact solution for small values of t/Re. We investigate how the growing core size leads to a shrinking of the cat's eye and hence to fluid leaking out of the trapped region into the free streams. In particular, we observe that particles initially located close to each other in neighbouring intervals along the streamwise direction escape from the cat's eye near opposite ends. The size of these intervals scales with the inverse square root of the Reynolds number. We furthermore examine the particle escape times and observe a self-similar blow-up for the particles near the border between two adjacent intervals. This can be explained on the basis of a simple stagnation-point flow. An investigation of interface generation shows that viscosity leads to an additional factor proportional to time in the growth rates. Numerical simulations confirm the above results and give a detailed picture of the underlying mixing processes.


Sign in / Sign up

Export Citation Format

Share Document