Combinatorial sums through Riordan arrays

2011 ◽  
Vol 101 (1-2) ◽  
pp. 195-210 ◽  
Author(s):  
Renzo Sprugnoli
2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
GwangYeon Lee ◽  
Mustafa Asci

Riordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called(p,q)-Fibonacci polynomials. We obtain combinatorial identities and by using Riordan method we get factorizations of Pascal matrix involving(p,q)-Fibonacci polynomials.


2009 ◽  
Vol 309 (2) ◽  
pp. 475-486 ◽  
Author(s):  
Donatella Merlini ◽  
Renzo Sprugnoli ◽  
Maria Cecilia Verri

2014 ◽  
Vol 687-691 ◽  
pp. 1394-1398
Author(s):  
Gao Wen Xi ◽  
Zheng Ping Zhang

By observing that the infinite triangle obtained from some generalized harmonic numbers follows a Riordan array, we using connections between the Stirling numbers of both kinds and other inverse generalized harmonic numbers. we proved some combinatorial sums and inverse generalized harmonic number identities.


2013 ◽  
Vol 842 ◽  
pp. 750-753
Author(s):  
Gao Wen Xi ◽  
Lan Long ◽  
Xue Quan Tian ◽  
Zhao Hui Chen

In this paper, By observing that the infinite triangle obtained from some generalized harmonic numbers follows a Riordan array, we obtain connections between the Stirling numbers of both kinds and other inverse generalized harmonic numbers. Further, we proved some combinatorial sums and inverse generalized harmonic number identities.


1994 ◽  
Vol 132 (1-3) ◽  
pp. 267-290 ◽  
Author(s):  
Renzo Sprugnoli

2021 ◽  
Vol 9 (1) ◽  
pp. 22-30
Author(s):  
Sibel Koparal ◽  
Neşe Ömür ◽  
Ömer Duran

Abstract In this paper, by means of the summation property to the Riordan array, we derive some identities involving generalized harmonic, hyperharmonic and special numbers. For example, for n ≥ 0, ∑ k = 0 n B k k ! H ( n . k , α ) = α H ( n + 1 , 1 , α ) - H ( n , 1 , α ) , \sum\limits_{k = 0}^n {{{{B_k}} \over {k!}}H\left( {n.k,\alpha } \right) = \alpha H\left( {n + 1,1,\alpha } \right) - H\left( {n,1,\alpha } \right)} , and for n > r ≥ 0, ∑ k = r n - 1 ( - 1 ) k s ( k , r ) r ! α k k ! H n - k ( α ) = ( - 1 ) r H ( n , r , α ) , \sum\limits_{k = r}^{n - 1} {{{\left( { - 1} \right)}^k}{{s\left( {k,r} \right)r!} \over {{\alpha ^k}k!}}{H_{n - k}}\left( \alpha \right) = {{\left( { - 1} \right)}^r}H\left( {n,r,\alpha } \right)} , where Bernoulli numbers Bn and Stirling numbers of the first kind s (n, r).


2021 ◽  
Vol 76 (1) ◽  
Author(s):  
Donatella Merlini

AbstractIn the context of Riordan arrays, the problem of determining the square root of a Bell matrix $$R={\mathcal {R}}(f(t)/t,\ f(t))$$ R = R ( f ( t ) / t , f ( t ) ) defined by a formal power series $$f(t)=\sum _{k \ge 0}f_kt^k$$ f ( t ) = ∑ k ≥ 0 f k t k with $$f(0)=f_0=0$$ f ( 0 ) = f 0 = 0 is presented. It is proved that if $$f^\prime (0)=1$$ f ′ ( 0 ) = 1 and $$f^{\prime \prime }(0)\ne 0$$ f ″ ( 0 ) ≠ 0 then there exists another Bell matrix $$H={\mathcal {R}}(h(t)/t,\ h(t))$$ H = R ( h ( t ) / t , h ( t ) ) such that $$H*H=R;$$ H ∗ H = R ; in particular, function h(t) is univocally determined by a symbolic computational method which in many situations allows to find the function in closed form. Moreover, it is shown that function h(t) is related to the solution of Schröder’s equation. We also compute a Riordan involution related to this kind of matrices.


Filomat ◽  
2016 ◽  
Vol 30 (4) ◽  
pp. 937-943 ◽  
Author(s):  
Buket Simsek ◽  
Ahmet Yardimci

In this paper we survey the 3D reconstruction of an object from its 2D cross-sections has many applications in different fields of sciences such as medical physics and biomedical applications. The aim of this paper is to give not only the Bezier curves in medical applications, but also by using generating functions for the Bernstein basis functions and their identities, some combinatorial sums involving binomial coefficients are deriven. Finally, we give some comments related to the above areas.


Author(s):  
W.-S. Chou ◽  
L. C. Hsu ◽  
P. J.-S. Shiue

The object of this paper is to show that generalized Stirling numbers can be effectively used to evaluate a class of combinatorial sums involving generalized factorials.


Sign in / Sign up

Export Citation Format

Share Document