scholarly journals Friedrichs Extension and Min–Max Principle for Operators with a Gap

2019 ◽  
Vol 21 (2) ◽  
pp. 327-357
Author(s):  
Lukas Schimmer ◽  
Jan Philip Solovej ◽  
Sabiha Tokus
Keyword(s):  
2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Domenico P. L. Castrigiano

AbstractSome basics of a theory of unbounded Wiener–Hopf operators (WH) are developed. The alternative is shown that the domain of a WH is either zero or dense. The symbols for non-trivial WH are determined explicitly by an integrability property. WH are characterized by shift invariance. We study in detail WH with rational symbols showing that they are densely defined, closed and have finite dimensional kernels and deficiency spaces. The latter spaces as well as the domains, ranges, spectral and Fredholm points are explicitly determined. Another topic concerns semibounded WH. There is a canonical representation of a semibounded WH using a product of a closable operator and its adjoint. The Friedrichs extension is obtained replacing the operator by its closure. The polar decomposition gives rise to a Hilbert space isomorphism relating a semibounded WH to a singular integral operator of Hilbert transformation type. This remarkable relationship, which allows to transfer results and methods reciprocally, is new also in the thoroughly studied case of bounded WH.


1994 ◽  
Vol 116 (1) ◽  
pp. 167-177 ◽  
Author(s):  
M. Benammar ◽  
W. D. Evans

In [5] Kalf obtained a characterization of the Friedrichs extension TF of a general semi-bounded Sturm–Liouville operator T, the only assumptions made on the coefficients being those necessary for T to be defined. The domain D(TF) of TF was described in terms of ‘weighted’ Dirichiet integrals involving the principal and non-principal solutions of an associated non-oscillatory Sturm–Liouville equation. Conditions which ensure that members of D(TF) have a finite Dirichlet integral were subsequently given by Rosenberger in [7].


1997 ◽  
Vol 09 (05) ◽  
pp. 609-633 ◽  
Author(s):  
Hagen Neidhardt ◽  
Valentin Zagrebnov

Let the pair of self-adjoint operators {A≥0,W≤0} be such that: (a) there is a dense domain [Formula: see text] such that [Formula: see text] is semibounded from below (stability domain), (b) the symmetric operator [Formula: see text] is not essentially self-adjoint (singularity of the perturbation), (c) the Friedrichs extension [Formula: see text] of [Formula: see text] is maximal with respect to W, i.e., [Formula: see text]. [Formula: see text]. Let [Formula: see text] be a regularizing sequence of bounded operators which tends in the strong resolvent sense to W. The abstract problem of the right Hamiltonian is: (i) to give conditions such that the limit H of self-adjoint regularized Hamiltonians [Formula: see text] exists and is unique for any self-adjoint extension [Formula: see text] of [Formula: see text], (ii) to describe the limit H. We show that under the conditions (a)–(c) there is a regularizing sequence [Formula: see text] such that [Formula: see text] tends in the strong resolvent sense to unique (right Hamiltonian) [Formula: see text], otherwise the limit is not unique.


2020 ◽  
Vol 14 (7) ◽  
Author(s):  
Matteo Gallone ◽  
Alessandro Michelangeli

Abstract We produce a simple criterion and a constructive recipe to identify those self-adjoint extensions of a lower semi-bounded symmetric operator on Hilbert space which have the same lower bound as the Friedrichs extension. Applications of this abstract result to a few instructive examples are then discussed.


Author(s):  
E. Müller-Pfeiffer

SynopsisWe prove that the selfadjoint elliptic differential equation (1) has rectangular nodal domains if the quadratic form of the equation takes on negative values. The existence of nodal domains is closely connected with the position of the smallest point of the spectrum of the corresponding selfadjoint operator (Friedrichs extension). If the smallest point of a second order selfadjoint differential operator with Dirichlet boundary conditions is an eigenvalue, then this eigenvalue is strictly increasing when the (possibly unbounded) domain, where the coefficients of the differential operator are denned, is shrinking (Theorem 4).


2015 ◽  
Vol 60 (3) ◽  
pp. 299-320 ◽  
Author(s):  
Siqin Yao ◽  
Jiong Sun ◽  
Anton Zettl

2005 ◽  
Vol 52 (3) ◽  
pp. 419-436 ◽  
Author(s):  
Johannes F. Brasche ◽  
Michael Melgaard

Sign in / Sign up

Export Citation Format

Share Document